Выращивание органов

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Выращивание органов — перспективная биоинженерная технология, целью которой является создание различных полноценных жизнеспособных биологических органов для человека. Пока технология не применяется на людях, так как все попытки трансплантации подобных органов пока были безуспешными[1], однако идут активные разработки и эксперименты в этой области. По словам директора Федерального научного центра трансплантологии и искусственных органов имени Шумакова профессора Сергея Готье выращивание органов станет доступным через 10—15 лет[2].

Современное состояние[править | править вики-текст]

Идея о искусственном выращивании человеческих органов не покидает учёных уже больше полувека, с того момента, как людям начали пересаживать органы доноров. Даже при возможности пересаживать большинство органов пациентам, в настоящее время очень остро стоит вопрос донорства. Многие пациенты умирают, не дождавшись своего органа. Искусственное выращивание органов может спасти миллионы человеческих жизней. Некоторые успехи в этом направлении уже достигнуты с помощью методов регенеративной медицины. Так, например, важный шаг на пути к выращиванию в лаборатории органов сделали исследователи из Японии. Им удалось создать простую, но вполне функциональную печень человека.[3][4] Исследователи получили клетки печени из ИПСК и культивировали их совместно с эндотелиальными клетками (предшественницами кровеносных сосудов) и мезенхимальными клетками, которые выполняют роль "клея", объединяющего различные клетки. Оказалось, что при определенном соотношении этих клеток их совместная культура проявляет способность к самоорганизации и образует трехмерные шарообразные структуры, представляющие собой зачаток печени. При трансплантации этих зачатков печени мышам было обнаружено, что они, примерно за 48 часов, образуют связи с близлежащими кровеносными сосудами и способны выполнять характерные для печени функции. По мнению некоторых ученых, подобные зачатки печени, если уменьшить их размер, а затем ввести в кровоток поврежденной печени, могли бы способствовать нормализации ее функции. К сожалению, пока нет гарантии, что клетки печени, полученные из ИПСК, не вызовут образование опухолей. Требуется тщательная отработка этих методов.

Появились и другие примеры успешной трансплантации методом зародышевых органов. Так, например, группа исследователей из Токийского университета наук и корпорации «Organ Technologies Inc» во главе с профессором Такаси Цудзи (Takashi Tsuji) продемонстрировала полную функциональную регенерацию подчелюстных слюнных желез из биоинженерных зародышей слюнной железы после их ортотопической (с удалением дефектной железы) трансплантации, с целью восстановительной терапии путем замены органа, мышам с моделью дефекта слюнных желез. Биоинженерный зародыш, сконструированный in vitro, развился в зрелую железу путем формирования гроздевидных отростков с мышечным эпителием и иннервацией. Он производил и выделял слюну в ответ на вкусовую стимуляцию цитратом, восстанавливал процесс глотания пищи, защищал ротовую полость от бактериальной инфекции [5] . Эта же группа успешно провела ортотопическую трансплантацию биоинженерных зародышей слезных желез мышам с моделью имитирующей повреждение эпителия роговицы, вызванное дисфункцией слезной железы. В условиях in vivo биоинженерные зародыши дали начало слезным железам способным выполнять физиологические функции, включая образование слезы, в ответ на нервную стимуляцию, и защиту глазной поверхности [6].

Исследователи Датского центра стволовых клеток разработали метод трехмерной (3-D) культуры в геле Matrigel со специально подобранным составом среды, который может быть использован для выращивания миниатюрных «затравок» поджелудочной железы. В перспективе такие «затравки» могут быть полезны для борьбы с диабетом в качестве «запчастей»[7].

Техника выращивания клеток в виде сфероидов в висячей капле была использована для культивации клеток сосочкового слоя волосяных фолликулов человека. Было показано, что при выращивании этих клеток в виде сфероидов, когда клетки растут как бы в более естественном трёхмерном окружении и взаимодействуют друг с другом, они способны заново индуцировать образование волосяных фолликулов в коже человека[8].

Создана так называемая «мускульная» ткань, реагирующая на сигналы, поступающие от нерва благодаря нервно-мышечному соединению, выращенному из клеток мышечной ткани и нейрональных клеток. Эта ткань потенциально может быть использована для фармакокинетических анализов и для создания привода мышц биороботов[9] и протезов.[10] Более того выращенная in vitro биоинженерная мышца оказалась способна к развитию и регенерации, а главное - смогла прижиться после трансплантации ее животному[11][12].

Из небольшого количества клеток носовой перегородки пациентов удалось вырастить хрящевую ткань, которая была использована для реконструкции носа после удаления онкообразования. По-прошествие более одного года, все пациенты были удовлетворены эстетическими и функциональными результатами операции и никаких отрицательных эффектов зарегистрировано не было[13]. Тканевые имплантанты выращенные в лаборатории из собственных мышечных и эпителиальных клеток девочек-пациенток, которым требовалась операции по реконструкции вагины после пластической операции не только успешно прижились, сформировав нервы и сосуды, но и нормально функционируют уже 8 лет[14][15].

Важным препятствием при трансплантации тканей и органов является их отторжение. Даже если операция прошла успешно пациенту с пересаженным органом приходится всю оставшуюся жизнь принимать препараты препятствующие отторжению. Чтобы сделать трансплантат «невидимым» для иммунной системы человека, создана культура человеческих эмбриональных стволовых клеток, которые синтезируют две молекулы подавляющие активность Т клеток,а именно: CTLA4-Ig (Cytotoxic T lymphocyte-associated antigen-4-immunoglobulin) и PD-L1 (Programmed death ligand 1) причем как до так и после дифференциации. Особенностью этих клеток является то что образующиеся из них аллогенные (от другого человека) ткани не вызывают иммунной реакции и отторжения после трансплантации.[16] Это значит, что трансплантацию органов и тканей выращенных из этих «универсальных» клеток, возможно, удастся проводить без необходимости проверки на совместимость.

Роль самоорганизации тканей[править | править вики-текст]

Ученые до сих пор не могут объяснить, как клетки самоорганизуются в сложные ткани. Как это ни удивительно,упорядоченные структуры возникают из клеток практически без внешних сил или влияния. Самоорганизация возникает на основе своего рода клеточной демократии. На протяжении развития, клетки воздействуют на поведение друг друга и принимают решения исходя из "разговора" с соседями. По мнению японского ученого Sasai[17] самоорганизация возникает только в популяциях определенного размера. "Подобные явления самоорганизации можно увидеть только в группах насчитывающих приблизительно от 1000 до 100000 клеток". "На этом уровне, клетки могут быть непосредственно демократичными, им не нужно специального губернатора или президента, чтобы организовать их." Клетки «сортируются»: однотипные слипаются, а разнотипные остаются разобщёнными. Позднее возникают центры организации руководящие морфогенезом путем выделения ростовых факторов (морфогенов) с помощью градиентов концентрации которых создаются так называемые биополя.[18][19][20]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Leading Surgeons Warn Against Media Hype About Tracheal Regeneration http://dx.doi.org/10.1016/j.jtcvs.2013.12.024
  2. Главный трансплантолог Минздравсоцразвития РФ: Технология выращивания жизненно важных искусственных органов будет доступна человечеству не ранее чем через 10-15 лет. Перспективы развития трансплантологии в России
  3. Takanori Takebe, Keisuke Sekine, Masahiro Enomura, et al. & Hideki Taniguchi (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature DOI:10.1038/nature12271
  4. Человеческую печень вырастили в мышах
  5. Ogawa, M., Oshima, M., Imamura, A., et al. & Tsuji, T. (2013) Functional salivary gland regeneration by transplantation of a bioengineered organ germ. Nature Communications; 4, Article number: 2498 DOI: 10.1038/ncomms3498
  6. Hirayama, M., Ogawa, M., Oshima, M., et al. & Tsuji, T. (2013) Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ. Nature Communications, 4, Article number: 2497 DOI: 10.1038/ncomms3497
  7. Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., Gobaa, S., Ranga, A., Semb, H., ... & Grapin-Botton, A. (2013) Artificial three-dimensional niches deconstruct pancreas development in vitro. Development, 140(21), 4452-4462. doi: 10.1242/dev.096628
  8. Higgins C.A., Chen J. C., Cerise J. E., et al. & Christiano A. M. (2013) Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. PNAS, doi:10.1073/pnas.1309970110
  9. Muscle-powered bio-bots walk on command
  10. Morimoto, Y., Kato-Negishi, M., Onoe, H., & Takeuchi, S. (2013). Three-dimensional neuron–muscle constructs with neuromuscular junctions. Biomaterials, 34(37), 9413-9419.
  11. Mark Juhas, George C. Engelmayr, Jr., Andrew N. Fontanella, Gregory M. Palmer, and Nenad Bursac.(March 2014). Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. PNAS, DOI:10.1073/pnas.1402723111
  12. Кирилл Стасевич (апрель 2014). ИСКУССТВЕННЫЕ МЫШЦЫ СПОСОБНЫ К САМОЛЕЧЕНИЮ. КОМПЬЮЛЕНТА
  13. Ilario Fulco, Sylvie Miot, Martin D Haug, et al. (2014). Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. The Lancet. DOI:10.1016/S0140-6736(14)60544-4
  14. Atlántida M Raya-Rivera, Diego Esquiliano, Reyna Fierro-Pastrana, et al. & Anthony Atala.(2014). Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. The Lancet; DOI:10.1016/S0140-6736(14)60542-0
  15. Стасевич К. ВЛАГАЛИЩЕ ИЗ ПРОБИРКИ ПРИЖИЛОСЬ В ЧЕЛОВЕЧЕСКОМ ОРГАНИЗМЕ. КОМПЬЮЛЕНТА
  16. Zhili Rong, Meiyan Wang, Zheng Hu, et al. &, Xuemei Fu. (2014) An Effective Approach to Prevent Immune Rejection of Human ESC-Derived Allografts. Cell Stem Cell,; 14 (1): 121 DOI:10.1016/j.stem.2013.11.014
  17. The Man Who Grew Eyes From Scratch
  18. Bement, W. M., & von Dassow, G. (2014). Single cell pattern formation and transient cytoskeletal arrays. Current opinion in cell biology, 26, 51-59.
  19. Ishihara, K., Nguyen, P. A., Wühr, M., Groen, A. C., Field, C. M., & Mitchison, T. J. (2014). Organization of early frog embryos by chemical waves emanating from centrosomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1650), 20130454.
  20. Karus, M., Blaess, S., & Brüstle, O. (2014). Self‐organization of neural tissue architectures from pluripotent stem cells. Journal of Comparative Neurology.

Литература[править | править вики-текст]