Альтернативная биохимия

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Альтернативная биохимия изучает возможность существования форм жизни, которым свойственны биохимические процессы, полностью отличающиеся от возникших на Земле. Обсуждаемые отличия включают замену углерода в молекулах органических веществ на другие атомы либо воды в качестве растворителя на другие жидкости. Подобные явления нередко описываются в фантастической литературе.

Замена углерода[править | править вики-текст]

Учёные немало высказывались на тему возможности построения органических молекул с помощью других атомов, но никто не предложил теорию, описывающую возможность воссоздания всего многообразия соединений, необходимых для существования жизни.

Кремний и кислород[править | править вики-текст]

Среди наиболее вероятных претендентов на роль структурообразующего атома в альтернативной биохимии называют кремний. Он находится в той же группе периодической системы, что и углерод, их свойства во многом схожи. Однако атомы кремния имеют бо́льшую массу и радиус, они сложнее образуют двойную или тройную ковалентную связь, что может помешать образованию биополимеров. Соединения кремния не могут быть настолько разнообразны, как соединения углерода.

Силаны — соединения кремния и водорода, являющиеся аналогом алканов (соединений углерода и водорода), менее устойчивы, чем углеродные соединения. В то же время, силиконы — полимеры, включающие цепочки чередующихся атомов кремния и кислорода, более жаропрочны. На этом основании предполагается, что кремниевая жизнь может существовать на планетах со средней температурой, значительно превышающей земную. В этом случае, роль универсального растворителя должна играть не вода, а соединения со значительно большей температурой кипения и плавления.

Так, например, предполагается, что соединения кремния будут стабильнее углеродных молекул в среде серной кислоты, то есть в условиях, которые могут существовать на других планетах[1]. В целом же, сложные молекулы с кремниево-кислородной цепью менее устойчивы по сравнению с углеродными аналогами.

Диоксид кремния (основной компонент песка), который является аналогом углекислого газа в углеродных формах жизни, представляет собой твёрдое, плохорастворимое вещество. Это создаёт трудности для поступления кремния в биологические системы, основанные на водных растворах, даже если окажется возможным существование биологических молекул на его основе. Диоксид кремния (учитывая примеси, всегда присутствующие в живых тканях и, вероятно, препятствующие кристаллизации) находится в агрегатном состоянии от жидкого до так называемого стеклообразного, поэтому становится тем жиже, чем выше температура. Тогда кремниевая жизнь может состоять из расплава «кремниево-биологических молекул» в диоксиде кремния в широком температурном диапазоне.

При всём разнообразии молекул, которые были обнаружены в межзвёздной среде, 84 основаны на углероде и лишь 8 — на кремнии[2]. Более того, из этих 8 соединений 4 включают углерод. Примерное соотношение космического углерода к кремнию — 10 к 1. Это даёт основание предполагать, что сложные углеродные соединения более распространены во Вселенной, уменьшая шанс формирования жизни на основе кремния, по крайней мере в тех условиях, что можно ожидать на поверхности планет.

На Земле, как и на других планетах земной группы, много кремния и очень мало углерода. Однако, земная жизнь развилась на основе углерода. Это свидетельствует в пользу того, что углерод более подходит для формирования биохимических процессов на планетах, подобных нашей. Остаётся возможность того, что при других комбинациях температуры и давления, кремний может участвовать в формировании биологических молекул в качестве замены углероду.

Следует отметить, что соединения кремния (в частности, диоксид кремния) используются некоторыми организмами на Земле. Из них свой панцирь формируют диатомовые водоросли, получая кремний из воды. В качестве структурного материала соединения кремния также используются радиолярией, некоторыми губками и растениями, они входят также в состав соединительной ткани человека.

Азот и фосфор[править | править вики-текст]

Азот и фосфор считают другими претендентами на роль основы для биологических молекул. Как и углерод, фосфор может составлять цепочки из атомов, которые, в принципе, могли бы образовывать сложные макромолекулы, если бы он не был таким активным. Однако, в комплексе с азотом, возможно образование более сложных ковалентных связей, что делает возможным возникновение большого разнообразия молекул, включая кольцевые структуры.

В атмосфере Земли азота около 78 процентов, однако в силу инертности двухатомного азота, энергетическая «цена» образования трёхвалентной связи слишком высока. В то же время некоторые растения могут связывать азот из почвы в симбиозе с анаэробными бактериями, живущими в их корневой системе. В случае присутствия в атмосфере значительного количества диоксида азота или аммиака, доступность азота будет выше. В атмосфере других планет, кроме того, могут существовать и другие оксиды азота.

Подобно растениям на Земле (например бобовым), инопланетные формы жизни могли бы усваивать диоксид азота из атмосферы. В таком случае мог бы сформироваться процесс наподобие фотосинтеза, когда энергия ближайшей звезды тратилась бы на образование аналогов глюкозы с выделением кислорода в атмосферу. В свою очередь, животная жизнь, стоящая выше растений в пищевой цепочке, усваивала бы из них питательные вещества, выделяя диоксид азота в атмосферу и соединения фосфора в почву.

В аммиачной атмосфере растения с молекулами на основе фосфора и азота получали бы соединения азота из окружающей их атмосферы, фосфор из почвы. В их клетках происходило бы окисление аммиака для образования аналогов моносахаридов, водород бы выделялся в качестве побочного продукта. В данном случае животные будут вдыхать водород, расщепляя аналоги полисахаридов до аммиака и фосфора, то есть энергетические цепочки формировались бы в обратном направлении, по сравнению с существующими на нашей планете (у нас бы вместо аммиака в данном случае распространён бы был метан).

Споры на эту тему далеко не окончены, так как некоторые этапы цикла на основе фосфора и азота являются энергодефицитными. Так же представляется спорным, чтобы во Вселенной соотношения этих элементов встречались в необходимой для возникновения жизни пропорции.

Азот и бор[править | править вики-текст]

Атомы азота и бора, находящиеся в «связке», в определённой степени имитируют связь «углерод—углерод». Так, известен боразол ~\mathrm{B_3N_3H_6}, который иногда называют «неорганическим бензолом». Всё же, на основе комбинации бора с азотом невозможно создать всё то разнообразие химических реакций, известных в химии углерода. Тем не менее, принципиальную возможность такой замены в виде каких-то отдельных фрагментов искусственных (или инопланетных) биомолекул нельзя полностью исключать.

Замена фосфора[править | править вики-текст]

В декабре 2010 года исследователь из НАСА Astrobiology Research Фелиса Вольфе-Симон (англ. Felisa Wolfe-Simon) сообщила об открытии бактерии GFAJ-1 из рода Halomonadaceae, способной при определённых условиях заменять фосфор мышьяком[3][4][5].

Но результаты опытов других экспериментаторов опровергают теорию о включении мышьяка в состав ДНК[6][7].

Замена воды[править | править вики-текст]

Авторское представление о планете, на которой аммиак выполняет функцию воды

Одним из требований для растворителя, способного к поддержанию альтернативной жизни, является то, что это вещество должно оставаться жидким в большом интервале температур. Вода является жидкой в интервале от 0 °C до 100 °C, — но существуют другие растворители, например, серная кислота, — которые остаются в жидком состоянии в интервале 200 °C и более[8].

Аммиак[править | править вики-текст]

Аммиак часто рассматривается в качестве наиболее вероятного (после воды) растворителя для возникновения жизни на какой-либо из планет. При давлении в 1 атм. он находится в жидком состоянии при температурах от −78 до −33 °C. Жидкий аммиак по ряду свойств напоминает воду, но следует заметить, что при замерзании твёрдый аммиак не всплывает вверх, а тонет (в отличие от водного льда).

Поэтому океан, состоящий из жидкого ~\mathrm{NH_3}, будет легко промерзать до дна. Кроме того, выбор аммиака как растворителя исключает выгоды от использования кислорода как биологического реагента. Однако, это не исключает возможности возникновения альтернативной жизни на планетах, где аммиак имеется в смеси с водой[9].

Фтороводород[править | править вики-текст]

По ряду свойств фтороводород напоминает воду. Так, он тоже способен к образованию межмолекулярных водородных связей. Однако стоит учитывать, что на 1 атом фтора в наблюдаемой вселенной приходится 10000 атомов кислорода, поэтому трудно представить на какой-либо планете условия, которые благоприятствовали бы образованию океана, состоящего из ~\mathrm{HF}, а не из ~\mathrm{H_2O}.

Другой серьёзный аргумент против такой возможности заключается в том, что твёрдая поверхность большинства планет (которые её имеют), за исключением некоторых экзотических гипотетических планет (железная планета, углеродная планета), состоит из диоксида кремния и алюмосиликатов, с которыми, как известно, фтористый водород реагирует по реакции:

~\mathrm{SiO_2 + 6HF \rightarrow} ~\mathrm{H_2SiF_6} ~\mathrm{+ 2H_2O}.

Цианистый водород[править | править вики-текст]

Цианистый водород ~\mathrm{HCN} также способен к образованию водородных связей, но в отличие от ~\mathrm{HF}, он состоит из широко распространённых во Вселенной элементов. Более того, считается, что это соединение играло значительную роль в предбиологической химии Земли — например, в образовании аминокислот, нуклеотидов и других компонентов «первичного бульона».

Тем не менее, цианистый водород не подходит в качестве возможного растворителя для альтернативной жизни хотя бы потому, что это соединение термодинамически неустойчиво. Так, жидкий цианистый водород довольно быстро осмоляется, особенно в присутствии катализаторов (в роли которых могут выступать кислоты, основания, глина и многие горные породы), причём иногда разложение ~\mathrm{HCN} протекает со взрывом. По этим причинам ~\mathrm{HCN} не способен образовать океан на какой-либо планете.

Замена кислорода[править | править вики-текст]

Интересной особенностью серной кислоты является то, что это вещество становится кислотой только в присутствии воды. Но вода в процессе полимеризации молекул сахаров и аминокислот не будет выделяться, если в органических молекулах на месте атомов кислорода будут находиться атомы серы. Такие «серные» организмы должны существовать при заметно более высокой температуре и в океане из олеума (безводной серной кислоты). Такие условия существуют на планете Венера. Поскольку молекулярный кислород, который бы мог образовать озоновый слой, защищающий от ультрафиолета, не образуется, то это создаёт сложности для выхода жизни на сушу. Этим можно объяснить то, что жизнь на Венере до сих пор не найдена, хотя есть косвенные свидетельства — наличие в одних и тех же регионах ~\mathrm{H_2S} и ~\mathrm{SO_2}, которые не могут сосуществовать, если их кто-то или что-то постоянно не производит[10]. По последним данным также был обнаружен тонкий озоновый слой на Венере, который, по словам учёных, образуется из углекислого газа в верхних слоях атмосферы под воздействием солнечного света[11].

Теоретически возможна замена кислорода другими халькогенами, но для существования жизни на их основе эти элементы встречаются слишком редко.

«Зеркальный мир»[править | править вики-текст]

В живой природе Земли все аминокислоты имеют L-конфигурацию, а углеводы — D-конфигурацию, за исключением крайне редких случаев, как то элементов оболочки возбудителя сибирской язвы. В принципе, можно представить себе «зеркальный мир», в котором живые организмы имеют ту же биохимическую основу, как и на Земле, — за исключением её полной зеркальной симметричности: в таком мире жизнь могла бы быть основана на D-аминокислотах и L-углеводах. Такая возможность не противоречит ни одному из известных на сегодня законов природы.

Одним из парадоксов такого гипотетического мира является тот факт, что, попав в такой мир (являющийся зеркальной копией Земли), человек мог бы умереть от голода, несмотря на обилие пищи вокруг[12]:13. Кроме того, употребление в пищу «зеркальных» молекул может вызвать отравление[12]:12—13.

Нехимические способы жизни[править | править вики-текст]

Некоторые философы, например, Циолковский, считали, что жизнь может принимать форму способных к сохранению формы и самовоспроизведению в некоторых условиях плазмоидов, прототипом которых служит шаровая молния. В последнее время благодаря компьютерному моделированию возможность существования плазменных форм жизни получила некоторое теоретическое обоснование[13].

Альтернативная биохимия в фантастических произведениях[править | править вики-текст]

  • В научно-фантастической повести русского учёного и писателя-фантаста Ивана Ефремова «Сердце Змеи» (1958) описывается контакт землян с инопланетной гуманоидной цивилизацией, в биохимии родной планеты которых роль кислорода играет фтор. Эта цивилизация, несмотря на тщательные поиски, не смогла обнаружить ни одной планеты с аналогичной им биохимией — все другие встреченные ими цивилизации космоса имели кислородную основу.
  • В классическом научно-фантастическом романе английского астронома Фреда Хойла «Чёрное облако» (1957) описывается контакт землян с передвигающимся между звёздами живым огромным чёрным облаком, состоящим из межзвёздного газа.
  • В научно-фантастическом рассказе английского писателя Артура Конан Дойла «Когда Земля вскрикнула» (1928) описывается живая Земля с жизнью на основе минералов и жидкостей (в частности, нефти) земной коры.
  • В научно-фантастическом романе Майкла Крайтона «Штамм Андромеда» рассказывается о внеземном вирусе с альтернативной биохимией на основе кристаллов серы.
  • В научно-фантастической повести А. Днепрова «Глиняный бог» рассматривается жизнь на основе кремния.
  • В научно-фантастическом рассказе А. Константинова «Контакт на Ленжевене» также рассматривается жизнь на основе кремния. Исследователи попадают на далёкую планету и оказываются в заброшенном городе с расставленными повсюду статуями. В конце концов выясняется, что статуи — это и есть кремниевые обитатели данной планеты, у которых жизненные процессы идут в сотни раз медленнее, чем у земных форм жизни.
  • В научно-фантастическом рассказе Станислава Лема «Правда» рассматривается «звёздная» жизнь на основе высокотемпературной плазмы в виде случайно созданной «амёбы», разрушившейся в результате падения электромагнитного поля. Кроме этого рассказа, жизнь на основе плазмы присутствует: у Олафа Стэплдона в «Создателе звёзд» — живые звёзды; у Эдмонда Гамильтона «Дети звёзд» и у Артура Кларка «Из солнечного чрева» — живые существа в глубине звёзд.
  • В научно-фантастическом романе Фрэнсиса Карсака «Пришельцы ниоткуда» рассматривается жизнь на основе низкотемпературной сверхпроводимости. Существам, метаболизм которых основан на сверхпроводимости (Мислики), требовались низкие температуры. Подходящих планет было мало, поэтому Мислики стали приспосабливать для жизни имеющиеся планеты — гасить звёзды, вокруг которых обращаются данные планеты.
  • Во многих произведениях Пола У. Андерсона описывается жизнь, использующая аммиак вместо воды. В частности: «Зовите меня Джо» (1957), «Завоевать три мира» (1964) и другие.
  • В сериале «Секретные материалы» в серии «Огнеход» (2x09) кремниевая форма жизни была обнаружена в жерле вулкана — грибы-паразиты. Споры этого гриба погибали в течение нескольких секунд после появления «плодового тела», если не успевали найти хозяина.
  • В кинокомедии «Эволюция» представлена инопланетная форма жизни на основе азота, имеющая 10 нуклеотидных пар. В мультсериале «Эволюция», снятом как продолжение фильма, эти существа представляют собой один суперорганизм.
  • В сериале «Звёздный путь: Оригинальный сериал» в серии «Дьявол в темноте» (1x25) появляется существо Хорт с биохимией на основе кремния.
  • В сериале «Звёздный путь: Анимационный сериал» в серии «Исчезновение планеты» (1x03) появляется гигантское существо из антиматерии, питающееся планетами из обычной материи.
  • В сериале «Звёздный путь: Вояджер» в серии «Добрый пастырь» (6x20) встречено живое существо, состоящее из тёмной материи.
  • В вымышленной Вселенной Mass Effect имеются расы турианцев и кварианцев, которые в отличие от представителей других разумных рас содержат D-аминокислоты. Также там имеется раса волусов — низкорослых гуманоидов, чья биохимия завязана на аммиаке при высоких давлениях.
  • В сериале «Звёздные врата: SG-1» в серии «Выжженная земля» (4x09) имеется высокоразвитая раса гадмиров, биохимическая основа которых (а также других организмов, с помощью которых те создавали биосферу) — сера вместо углерода.
  • В рассказе Кира Булычёва «Снегурочка» описывается гуманоидная цивилизация на основе аммиака вместо воды.
  • Крона, главный антагонист мультфильма «Зелёный Фонарь: Изумрудные рыцари», состоит из антивещества.
  • Во многих вымышленных вселенных присутствуют существа из чистой энергии.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Gillette Stephen World-Building. — Writer's Digest Books.
  2. Lazio, Joseph F.10 Why do we assume that other beings must be based on carbon? Why couldn't organisms be based on other substances?. [sci.astro] ET Life (Astronomy Frequently Asked Questions). Проверено 21 июля 2006.
  3. Wolfe-Simon F, Blum JS, Kulp TR, et al. (December 2010). «A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus». Science. DOI:10.1126/science.1197258. PMID 21127214.
  4. Arsenic-eating microbe may redefine chemistry of life (англ.). naturenews. Проверено 26 января 2011. Архивировано из первоисточника 24 февраля 2012.
  5. Астробиологическое открытие ведёт насыщенную ядом жизнь (рус.). membrana. Проверено 26 января 2011. Архивировано из первоисточника 24 февраля 2012.
  6. Елена Клещенко. Две дамы, ДНК и мышьяк (рус.). Элементы.ru. Проверено 18 января 2013. Архивировано из первоисточника 20 января 2013.
  7. Биологи попытались окончательно опровергнуть теорию «мышьяковой жизни» (рус.). Lenta.ru (4 октября 2012). Проверено 18 января 2013. Архивировано из первоисточника 21 января 2013.
  8. Exotic life beyond Earth? Looking for life as we don’t know it (англ.). europlanet. Проверено 26 января 2011. Архивировано из первоисточника 24 февраля 2012.
  9. Крион — Фантастические существа вики
  10. Жизнь по соседству с Землёй. Часть первая (рус.). membrana. Проверено 26 января 2011. Архивировано из первоисточника 24 февраля 2012.
  11. У Венеры нашли озоновый слой. Lenta.ru (7 октября 2011). Проверено 14 апреля 2014.
  12. 1 2 Об асимметрии живого // Биология / Сост. тома С. Т. Испаилова. — 3-е изд. — М.: Аванта+, 1996. — Т. 2. — 704 с. — (Энциклопедия для детей). — 50 000 экз. — ISBN 5-86529-012-6.
  13. Пылевая плазма намекает на молекулу жизни (рус.). membrana. Проверено 26 января 2011. Архивировано из первоисточника 24 февраля 2012.

Литература[править | править вики-текст]

  • Топунов А. Ф., Шумаев К. Б. Альтернативная биохимия и распространенность жизни. Вестник САО. 2006. Т. 60-61.
  • Хоровиц Н. Поиски жизни в Солнечной системе. Пер. с англ. канд. биол. наук В. А. Отрощенко под ред. д-ра биол. наук М. С. Крицкого. М., «Мир», 1988, с. 77—79.
  • Пол Дэвис. Чужие среди своих. — В поисках свидетельств того, что жизнь на Земле возникала не раз, учёные внимательно исследуют экологические ниши, где могли бы обитать микроорганизмы, радикально отличающиеся от тех, которые нам так хорошо знакомы. «В МИРЕ НАУКИ», март 2008 № 3
  • membrana: Химики показали путь к неорганической жизни