Метилирование ДНК

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Отрезок молекулы ДНК в центре которого находятся два симметрично (по обеим цепям) расположенных метилцитозина в составе CpG-динуклеотидов.

Метилирование ДНК — это модификация молекулы ДНК без изменения самой нуклеотидной последовательности ДНК, что можно рассматривать как часть эпигенетической составляющей генома[1][2][3].

Метилирование ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции С5 цитозинового кольца. Метилированный цитозин может затем окисляться особыми ферментами, что в конечном итоге приводит к его деметилированию обратно в цитозин[4].

Метилирование ДНК считается, в основном, присущим эукариотам. У человека метилировано около 1 % геномной ДНК. В соматических клетках взрослого организма метилирование ДНК обычно происходит в CpG-динуклеотидах; метилирование ДНК вне CpG-динуклеотидов встречается в эмбриональных стволовых клетках.[5] [6]

У растений метилирование цитозина происходит как симметрично по обеим цепям (на CpG или CpNpG), так и асимметрично лишь на одной из двух цепей (на CpNpNp, где N обозначает любой нуклеотид).

Метилирование ДНК у млекопитающих[править | править вики-текст]

Около 60—70 % всех CpG-динуклеотидов у млекопитающих метилированы. Неметилированные CpG-динуклеотиды сгруппированы в т. н. «CpG-островки», которые присутствуют в 5' регуляторных областях многих генов. Различные заболевания, например, рак, сопровождаются начальным аномальным гипометилированием ДНК и последующим гиперметилированием CpG-островков в промоторных областях генов, что приводит к устойчивой репрессии транскрипции. Репрессия транскрипции в этом случае опосредована белками, которые способны связываться с метилированными CpG-динуклеотидами. Эти белки, называемые метилцитозин-связывающими белками, привлекают деацетилазу гистонов (HDAC) и другие факторы, участвующие в ремоделировании хроматина. Сформировавшийся комплекс может модифицировать гистоны, формируя конденсированную транскрипционно неактивную структуру гетерохроматина. Влияние метилирования ДНК на структуру хроматина имеет большое значение для развития и функционирования живого организма. В частности, отсутствие метилцитозин-связывающего белка 2 (MeCP2) вследствие, например, мутации в соответствующем гене, приводит к развитию синдрома Ретта у человека; инактивация метилцитозин-связывающего доменного белка 2 (Methyl-CpG binding domain protein 2 — MBD2), который участвует в репрессии транскрипции гиперметилированных генов, отмечена при онкологических заболеваниях.

Метилирование ДНК у человека[править | править вики-текст]

У человека за процесс метилирования ДНК отвечают три фермента, называемые ДНК-метилтрансферазами 1, 3a и 3b (DNMT1, DNMT3a, DNMT3b), соответственно. Предполагается, что DNMT3a и DNMT3b — это de novo метилтрансферазы, которые осуществляют формирование паттерна метилирования ДНК на ранних стадиях развития, а также его изменения в процессе дифференцировки клеток. Существует гипотеза о том, что метилирование ДНК de novo вызывается, в частности, интерферирующими РНК при помощи РНК-зависимого метилирования ДНК — процесса, возникшего в ходе эволюции с целью репрессии мобильных элементов генома.[7] DNMT1 является ДНК-метилтрансферазой, которая поддерживает метилированное состояние ДНК, присоединяя метильные группы к одной из цепей ДНК в точках, где другая, комплементарная ей цепь, метилирована. Предполагается, что роль ингибиторов ДНК метилазы DNMT1 регулирующих метилирование ДНК выполняют не-полиаденилированные длинные некодирующие РНК (en:long noncoding RNA — lncRNA)[8] Белок DNMT3L гомологичен другим DNMT-белкам, но не имеет каталитической активности. Вместо этого, DNMT3L поддерживает de novo метилтрансферазы, способствуя связыванию этих ферментов с ДНК и стимулируя их активность.

Важными этапами в развитии злокачественных новообразований является предварительное гипометилирование ДНК[9] и последующая инактивация генов-супрессоров опухолевого роста[10]. В случае, когда инактивация была обусловлена метилированием промоторной области гена, проводились эксперименты по возобновлению экспрессии путём ингибирования DNMT. 5-aza-2'-дезоксицитидин (децитабин) является нуклеозидным аналогом, ингибирующим DNMT метилтрансферазы. Механизм действия препарата основан на ковалентном связывании фермента в комплексе с ДНК, что делает невозможным выполнение ферментом своей функции и приводит к деградации метилтрансферазы. Однако для того, чтобы децитабин был активен, он должен встроиться в геном клетки, но это, в свою очередь, может вызвать мутации в дочерних клетках, если клетка не погибает и продолжает деление. К тому же, децитабин токсичен для костного мозга, что сужает область его терапевтического применения. Эти ограничения привели к интенсивному поиску методов терапевтического воздействия, основанных на использовании «антисмысловых» РНК, которые противодействуют DNMT посредством деградации её мРНК и, следовательно, блокируют трансляцию. Возможность осуществить избирательно деметилирование гена и таким образом изменить его экспрессию дает открытие, так называемой, экстракодирующей РНК (extracoding RNA), которая способна связываться с DNMT1, блокируя его способность осуществлять метилирование конкретного гена[11]. Тем не менее, по-прежнему остаётся открытым вопрос о том, является ли ингибирование функции DNMT1 достаточным условием для увеличения экспрессии генов-супрессоров, негативная регуляция транскрипции которых осуществляется метилированием ДНК.

Янг с соавт. разработали эффективный метод избирательного целевого деметилирования конкретных CpG в клетках человека с использованием объединенного путем молекулярной инженерии избирательно связывающего ДНК домена TALE (transcription activator-like effector) и каталитического домена TET1 гидроксилазы катализирующего превращение 5-метилцитозина в 5-гидроксиметилцитозин [12]. Используя эту объединенную молекулу TALE-TET1, они показали, что деметилирование определенных CpG промотора может привести к существенному увеличению экспрессии соответствующих генов человека.

Разработана среда, которая вызывает гипометилирование ДНК в клетках in vitro. Эта среда, называемая 2i, содержит два низкомолекулярных ингибитора, один из которых ингибирует сигнальный путь ERK1 / 2, а другой Gsk3β. Она широко используется для перепрограммирования и поддержания плюрипотентного состояния клеток[13][14].

Изменения метилирования ДНК при старении[править | править вики-текст]

В настоящее время хорошо известно, что ландшафт метилирования геномной ДНК изменяется в зависимости от возраста[15][16][17][18][19]. Этот процесс, называемый «эпигенетическим дрейфом»[20][21], тесно связан с хронологическим возрастом и вместе с тем, по утверждению некоторых авторов, не является маркером репликативного клеточного старения, так как обнаруживается и в «не стареющих» стволовых клетках[22][23]. Для репликативного клеточного старения найдены несколько иные эпигенетические биомаркеры также основанные на изменении метилирования ДНК в определенных местах генома[24] Определение эпигенетического старения по метилированию ДНК генов ITGA2B, ASPA и PDE4C позволяет определить биологический возраст человека со средним абсолютным отклонением от хронологического возраста не превышающим 5 лет[25]. Эта точность выше, чем возрастные прогнозы на основе длины теломер.

В процессе старения организма человека существенно снижается функциональный потенциал гемопоэтических стволовых клеток (ГСК), что способствует развитию у пожилых людей кроветворной патофизиологии[26]. Это возрастное снижение числа ГСК и их способности к пролиферации, как оказалось, зависит в большей степени не от длины теломер, а от гиперметилирования ДНК генов, регулируемых Поликомб Репрессорным комплексом 2[27].

Смотри также: Biological clock (aging)

Роль метилирования в онкогенезе[править | править вики-текст]

Сопоставление данных по генотипу людей предрасположенных к онкологическим заболеваниям с профилем метилирования их ДНК позволило предположить, что примерно в 20% случаев наследуемого рака обнаруживается взаимосвязь между уровнем метилирования определенных локусов и полиморфизмами генов связанных с риском заболевания раком. В частности, наблюдалась высоко значимая корреляция между уровнем метилирования CpG и экспрессией ключевых генов рака, таких как MYC, TERT, and TP63[28]

Метилирование ДНК у насекомых[править | править вики-текст]

Уровень метилирования ДНК у излюбленного объекта генетиков Drosophila melanogaster очень низкий, что мешало исследованию его методами бисульфитного секвенирования[29] Такаяма с соавт. [30] разработали высокочувствительный метод, который позволил обнаружить, что профиль метилирования последовательностей ДНК генома мухи очень сильно отличается от профиля метилирования генома человека, животных или растений. Метилирование генома у дрозофилы сосредоточено в определенных коротких последовательностях оснований (из 5 пар нуклеотидов), которые богаты CA и CT, но обеднены гуанином. Кроме того оно, как оказалось, не зависит от DNMT2 активности. Дальнейшее изучение метилирования ДНК у дрозофилы поможет выявлению возрастных изменений эпигенома.

Метилирование ДНК у растений[править | править вики-текст]

В последнее время произошел значительный прорыв в понимании процесса метилирования ДНК у растений, особенно у Arabidopsis thaliana. Основными метилтрансферазами ДНК у A. thaliana являются Met1, Cmt3 и Drm2, которые на уровне аминокислотной последовательности подобны вышеописанным метилтранферазам ДНК у млекопитающих. Drm2, предположительно, участвует как в de-novo метилировании ДНК, так и в поддержании метилирования на более поздних стадиях развития. Cmt3 и Met1, главным образом, выполняют функцию поддержания метилирования ДНК.[31] Прочие метилтрансферазы ДНК также присутствуют у растений, но их функция пока не выяснена (См. [1]). Считается, что специфичность метилтрансферазы в процессе метилирования ДНК модулируется при помощи РНК. Специфичные РНК-транскрипты транскрибируются с определенных участков матрицы — геномной ДНК. Эти РНК-транскрипты могут формировать двухцепочные молекулы РНК. Двухцепочные РНК, посредством регуляторных сигнальных путей, связанных либо с малыми интерферрирующими РНК (siRNA), либо с микроРНК (miRNA), детерминируют локализацию метилтрансфераз ДНК на участках специфических нуклеотидных последовательностей в геноме[32].

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Bethany A. Buck-Koehntop and Pierre-Antoine Defossez (2013) On how mammalian transcription factors recognize methylated DNA. 8(2), 131—137 http://dx.doi.org/10.4161/epi.23632
  2. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W.(2013) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Phil. Trans. R. Soc. B 368, 20110330. doi:10.1098/rstb.2011.0330
  3. Kelsey G, Feil R. (2013) New insights into establishment and maintenance of DNA methylation imprints in mammals. Phil. Trans. R. Soc. B 368, 20110336. doi:10.1098/rstb.2011.0336
  4. Rahul M. Kohli & Yi Zhang (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502(7472), 472—479 doi:10.1038/nature12750
  5. Dodge, Jonathan E.; Bernard H. Ramsahoyeb, Z. Galen Woa, Masaki Okanoa, En Li (May 2002). «De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation». Science Direct.
  6. Haines, Thomas R. (Dec 2001). «Allele-Specific Non-CpG Methylation of the Nf1 Gene during Early Mouse Development». Science Direct.
  7. Галицкий В.А. (2008). «Гипотеза о механизме инициации малыми РНК метилирования ДНК de novo и аллельного исключения» (русский). Цитология 50(4): 277–286.
  8. Fan Lai and Ramin Shiekhattar (January 2014). Where long noncoding RNAs meet DNA methylation. Cell Research, doi: 10.1038/cr.2014.13
  9. Elias Daura-Oller, Maria Cabre, Miguel A Montero, Jose L Paternain, and Antoni Romeu (2009)"Specific gene hypomethylation and cancer: New insights into coding region feature trends". Bioinformation. 2009; 3(8): 340—343.PMID PMC2720671
  10. Stepanenko, A. A., & Kavsan, V. M. (2012) Immortalization and malignant transformation of Eukaryotic cells. Cytology and Genetics, 46(2), 96-129
  11. Di Ruscio, A., Ebralidze, A. K., Benoukraf, T. Et al. & Tenen, D. G. (2013)DNMT1-interacting RNAs block gene-specific DNA methylation. Nature; DOI: 10.1038/nature12598
  12. Maeder, M. L., Angstman, J. F., Richardson, M. E., et al. & Joung, J. K. (2013). Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nature biotechnology. doi:10.1038/nbt.2726
  13. Gabriella Ficz, Timothy A. Hore, Fátima Santos, et al. & Wolf Reik (2013) FGF Signaling Inhibition in ESCs Drives Rapid Genome-wide Demethylation to the Epigenetic Ground State of Pluripotency. Cell Stem Cell, 13(3), 351—359 http://dx.doi.org/10.1016/j.stem.2013.06.004
  14. Hakan Bagci, Amanda G. Fisher (2013) DNA Demethylation in Pluripotency and Reprogramming: The Role of Tet Proteins and Cell Division. Cell Stem Cell, 13(3), 265—269 doi: 10.1016/j.stem.2013.08.005
  15. Johansson Å, Enroth S, Gyllensten U (2013) Continuous Aging of the Human DNA Methylome Throughout the Human Lifespan. PLoS ONE 8(6): e67378. doi:10.1371/journal.pone.0067378
  16. Hannum, G., Guinney, J., Zhao, L., et al. & Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular cell, 49(2), 359—367.
  17. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, et al. (2012) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A 109: 10522-10527. doi:10.1073/pnas.1120658109
  18. Pogribny, I. P., & Vanyushin, B. F. (2010). Age-related genomic hypomethylation. In Epigenetics of Aging (pp. 11-27). Springer New York. DOI: 10.1007/978-1-4419-0639-7_2
  19. Florath, I., Butterbach, K., Müller, H., Bewerunge-Hudler, M., et al. & Baca, V. (2013). Cross-sectional and longitudinal changes in DNA methylation with age: An epigenome-wide analysis revealing over novel age-associated CpG sites. Human molecular genetics, doi: 10.1093/hmg/ddt531
  20. Teschendorff, A. E., West, J., & Beck, S. (2013). Age-associated epigenetic drift: implications, and a case of epigenetic thrift?. Hum. Mol. Genet. 22 (R1):R7-R15 doi: 10.1093/hmg/ddt375
  21. West, J., Widschwendter, M., & Teschendorff, A. E. (2013). Distinctive topology of age-associated epigenetic drift in the human interactome. PNAS, 110(35), 14138-14143. doi:10.1073/pnas.1307242110
  22. Steve Horvath (2013) DNA methylation age of human tissues and cell types. Genome Biology, 14(10):R115 doi:10.1186/gb-2013-14-10-r115
  23. Bocklandt S, Lin W, Sehl ME, Sánchez FJ, Sinsheimer JS, et al. (2011)Epigenetic Predictor of Age. PLoS ONE 6(6): e14821. doi:10.1371/journal.pone.0014821
  24. Koch, C. M., & Wagner, W. (2013). Epigenetic Biomarker to Determine Replicative Senescence of Cultured Cells. In Biological Aging. Сер.: Methods in Molecular Biology, Vol. 1048, (pp. 309—321). Humana Press. DOI: 10.1007/978-1-62703-556-9_20
  25. Carola Ingrid Weidner, Qiong Lin, Carmen Maike Koch et al. and Wolfgang Wagner (February 2014). Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biology, 15:R24 doi:10.1186/gb-2014-15-2-r24
  26. Myung Geun Shin (2014). Aging and impaired hematopoiesis. J Korean Med Assoc.; 57(4), 334-340. http://dx.doi.org/10.5124/jkma.2014.57.4.334
  27. Beerman, I., Bock, C., Garrison, B. S., Smith, Z. D., Gu, H., Meissner, A., & Rossi, D. J. (2013). Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell, 12(4), 413-425 DOI:10.1016/j.stem.2013.01.017
  28. Heyn H, Sayols S, Moutinho C,et al. & Esteller M.(2014) Linkage of DNA Methylation Quantitative Trait Loci to Human Cancer Risk. Cell Reports, http://dx.doi.org/10.1016/j.celrep.2014.03.016
  29. Capuano, F; Muelleder, M; Kok, R. M.; Blom, H. J.; Ralser, M (2014). Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe and other yeast species. Analytical Chemistry: 140318143747008. DOI:10.1021/ac500447w
  30. S. Takayama, J. Dhahbi, A. Roberts, G. Mao, S.-J. Heo, L. Pachter, D. I. K. Martin, D. Boffelli (2014). Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Research, DOI:10.1101/gr.162412.113
  31. Cao, Xiaofeng; Jacobsen, Steven E. (2003 Jul). «Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes». PNAS.
  32. Aufsatz, Werner; M. Florian Mette, Johannes van der Winden, Antonius J. M. Matzke, Marjori Matzke (2002 Dec). «RNA-directed DNA methylation in Arabidopsis». PNAS.

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]