Тарталья, Никколо

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Никколо Тарталья.

Никколо Фонтана Тарталья (итал. Niccolò Fontana Tartaglia, 14991557) — итальянский математик.

Биография[править | править вики-текст]

Родился в Брешии. Истинная фамилия — Фонтана (Fontana). Отца своего он звал по имени Micheletto (Микелетто). В 1512 году, во время взятия Брешии французами, когда он с матерью спасался в соборе, он получил рану в нижнюю часть лица, вследствие которой произношение его стало неправильным. Поэтому товарищи прозвали его заикой (tartaglia) и прозвище это сделалось его фамилией.

В возрасте 14 лет, он был отдан в обучение публичному писцу, но так как мать его не могла аккуратно платить учителю, то Тарталья должен был прекратить учение в самом начале. Обладая большой настойчивостью и терпением, он научился читать сам. Пристрастившись к математике, он достиг того, что стал сам преподавать другим и впоследствии стал известным математиком своего времени. Преподавал он в Вероне, Брешии и Венеции.

Учеником Тартальи был другой выдающийся учёный эпохи ВозрожденияДжамбатиста Бенедетти.

Научная деятельность[править | править вики-текст]

В оставленных Тартальей сочинениях он рассматривает не только вопросы математики, но и некоторые вопросы практической механики, баллистики и топографии. Так, в первом из его сочинений, «Nuova scienza» (1537), он впервые рассматривает вопрос о траектории выпущенного снаряда, причём утверждает, что траектория эта на всём её протяжении есть кривая линия, между тем как до него учили, что траектория снаряда состоит из двух прямых, соединённых кривой линией; тут же он показывает, что наибольшая дальность полёта соответствует углу в 45°; кроме того, в этой книге рассматриваются различные вопросы об измерении поверхности полей.

Вместе с вопросами артиллерии Тарталья занимался также и вопросами укрепления городов и фортификацией вообще и в сочинении «Quesiti et invenzioni diverse» (1546) он предлагает даже особую систему фронта, по начертанию схожего с тенальным; он трактует также о топографической съёмке с помощью буссоли и излагает историю открытия им решения кубических уравнений. В сочинениях «La travagliata invenzione» и «Ragionamenti sopra la Travagliata invenzione» (оба 1551 г.) говорится о разных изобретениях автора, которые он приписывает себе, но все они уже изложены в 1550 г. в книге Кардано «De subtilitate» и принадлежат последнему.

Наиболее обширное сочинение автора называется «Generale trattato de numeri e misure» (15561560); в нём подробно рассматриваются многие вопросы арифметики, алгебры и геометрии.

По словам Тартальи, он самостоятельно открыл общий алгоритм решения кубических уравнений, несколько ранее найденный Сципионом дель Ферро. В 1539 году Тарталья передал описание этого метода Дж. Кардано, который поклялся не публиковать его без разрешения Тартальи. Несмотря на обещание, в 1545 году Кардано опубликовал этот алгоритм в работе «Великое искусство», и по этой причине он вошёл в историю математики как «формула Кардано».

Вопрос о том, действительно ли Тарталья независимо открыл метод дель Ферро, неоднократно обсуждался [1]. Высказывалось предположение, что на самом деле Тарталья каким-то образом получил доступ к записям дель Ферро. В качестве косвенных доказательств этой гипотезы историки ссылались на то, что других серьёзных математических достижений у Тартальи не было. Однако прямых свидетельств в пользу указанного предположения найти не удалось.

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • История математики под редакцией А. П. Юшкевича в трёх томах, М., Наука:
  • Гиндикин С. Г. Рассказы о физиках и математиках. — издание третье, расширенное. — М.: МЦНМО, 2001. — 465 с. — ISBN 5-900916-83-9
  • Григорьян А. Т. Механика от античности до наших дней. — М.: Наука, 1974.
  • Кирсанов В. С. Научная революция XVII века. — М.: Наука, 1987.
  • Dugas R. The history of mechanics. — Routlege & Kegan Paul, 1955.
  • Nicolo Fontana Tartaglia на сайте биографий Mac Tutor.

Примечания[править | править вики-текст]

  1. Гиндикин С. Г. (2001), стр. 36-37.


При написании этой статьи использовался материал из Энциклопедического словаря Брокгауза и Ефрона (1890—1907).