АДУ-1000

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Радиотелескоп АДУ-1000
Антенна передатчика возле п.Заозёрное
Антенна передатчика возле п.Заозёрное
Тип радиотелескоп, планетный радар
Расположение Евпатория, Крым
Координаты 45°10′13″ с. ш. 00°00′00″ в. д.HGЯO
Длины волн радиоволны λ=8 см, λ=30…40 см
Дата открытия сентябрь 1960
Диаметр 8 зеркал диаметром 16 м
Купол нет

АДУ-1000 — комплекс приёмных и передающих антенн, часть приёмного комплекса «Плутон» Центра дальней космической связи.

Построенные всего за один год, эти антенны обеспечивали все программы исследования дальнего космоса до конца 1970-х годов, пока им на смену не была построена антенна РТ-70. На базе этих антенн был создан первый советский планетный локатор диапазона дециметровых волн, проведены первые в мире радиолокационные исследования Венеры, Марса и Меркурия и уточнены модели их движения.

Комплекс «Плутон» состоит из трёх раздельных приёмных и передающих антенн АДУ-1000. Передающая (К1 — 45°10′13″ с. ш. 00°00′00″ в. д.HGЯO) находится на 2-й площадке Центра дальней космической связи возле посёлка Заозёрное, две приёмные (К2 — 45°13′14″ с. ш. 33°10′17″ в. д.HGЯO и К3 — 45°13′14″ с. ш. 33°09′55″ в. д.HGЯO) находятся на 1-й площадке Центра дальней космической связи.

Разнесение антенн на 8,5 км связано с необходимостью изолировать чувствительное приёмное оборудование на 1-й площадке от мощного излучения передающих антенн на 2-й площадке.

Характеристики[править | править код]

Антенна АДУ-1000 работает в дециметровом диапазоне волн (λ=30…40 см).

  • запросная радиолиния 770 МГц,
  • ответная радиолиния 921 МГц[1]

Эффективная площадь антенны 900 м², шумовая температура при зенитном положении антенны 25 К. Ширина диаграммы направленности антенны на приёмной частоте в горизонтальной плоскости составляет 16 угловых минут, в вертикальной 36 — угловых минут. На передающей частоте ширины диаграммы направленности соответственно равны 19 и 40 угловым минутам[2].

Поступающая от передатчика мощность в 1960 году была равна 10 кВт в режиме непрерывного излучения. Затем мощность была повышена до 40 кВт. В данный момент мощность передатчика в режиме непрерывного излучения равна 100 кВт. В импульсном режиме мощность достигает 250 МВт в стерадиан[3].

Антенна имеет программное наведение с точностью 1 угловая минута.

В 1962 году «Плутон» был модернизирован. На нём была установлена аппаратура приёма научной информации в сантиметровом диапазоне. Были применены малошумящие квантовые усилители на парамагнитных кристаллах, охлаждаемые жидким гелием. После модернизации эффективная площадь антенны в ДМ-диапазоне волн составила 650 м², в СМ — 450 м². Размер луча — 2500×1250 угловых секунд.

Дальность связи — 300 млн км[3][4].

Скорость передачи научной информации составляла до 3 кбит/с при приёме телеметрии и до 6 кбит/с при приёме изображений.

Конструкция[править | править код]

8 параболических зеркал, расположенных в 2 ряда по 4 зеркала

Антенна АДУ-1000 представляет собой решётку из восьми 16-метровых дюралевых параболических зеркал, расположенных в два ряда по четыре зеркала на общем поворотном устройстве.

Решётка размещена на двух прочных корпусах дизельных подводных лодок, сваренных между собой и закреплённых на ферме железнодорожного моста, которая установлена на опорно-поворотном устройстве 305-мм орудийных башен главного калибра утилизируемых крейсеров типа «Сталинград»[3][4][5][6]. Поворотные устройства орудийных башен лично отбирали С. П. Королёв и М. В. Келдыш[4]. Вся антенна покоится на бетонном основании, выполненном с высокой точностью. Использование готовых конструкций позволило построить антенны в ускоренные сроки. Все вращающиеся части каждой антенны весят 1500 тонн[4].

Фидерный тракт приёмной антенны выполнен на базе волноводов 292×146 мм. Сигналы суммируются сначала от каждой вертикальной пары зеркал, затем от двух соседних пар, объединённых в четвёрку, и, наконец, от двух четвёрок, образующих восьмёрку[2].

«Кадр», первая советская система цифрового программного управления наведением антенн АДУ-1000, была создана в 1960 году в ЦНИИ «Агат» под руководством Я. А. Хетагурова. Выполненные Хетагуровым научные исследования и теоретические проработки позволили создать систему программного управления и наведения с точностью, полностью удовлетворяющей требованиям дальней связи, обусловленными технико-технологическими заданиями на систему. Разработка системы «Кадр» была высоко оценена правительством: Я. А. Хетагуров был награждён орденом Ленина и медалью Президиума Академии наук СССР «В ознаменование первого в мире выхода человека в космическое пространство», участники разработки были награждены орденами и медалями[7].

Электроприводы антенн АДУ-1000 разработаны и отлажены НИИ автоматики и гидравлики (бывший ЦНИИ-173 оборонной техники). Радиосистемы комплекса «Плутон» создавалась СКБ-567. 16-метровые параболические антенны изготавливал Горьковский машиностроительный завод оборонной промышленности, металлоконструкцию для их объединения монтировало НИИ тяжёлого машиностроения, электронику системы наведения и управления антеннами разрабатывал МНИИ-1 судостроительной промышленности[5].

В 1961 году передающая антенна была модернизирована для обеспечения работы планетного радиолокатора. Системы планетного радара, были разработаны в Институте радиотехники и электроники АН СССР и созданы в виде макетов. Были впервые применены недавно изобретённые мазеры. Работами руководил А. В. Францессон.

В этом же году осуществлена первая в мире радиолокация Венеры. В 1962 году были модернизированы и приёмные антенны для обеспечения одновременного приёма в дециметровом и сантиметровом (λ=8 см) диапазонах волн. Для этого зеркальная система элемента решётки выполняется по двухзеркальной схеме Кассегрена[2][8] и устанавливается двухчастотный облучатель. Фидерный тракт сантиметрового диапазона выполнен на базе круглых волноводов диаметром 70 и 120 мм.

Фрагмент общего поворотного устройства
Одна из двух приёмных антенн АДУ-1000
Ферма ж/д моста на опорно-поворотном устройстве 305-мм орудийной башни

Научные задачи[править | править код]

Комплекс «Плутон» обеспечивал все советские программы исследования дальнего космоса до конца 1970-х годов.

В 1960—1970-х годах велись работы с космическими аппаратами «Венера».

В 1971 году велась работа с космическими аппаратами «Марс-2» и «Марс-3».

В 1973 году с космическими аппаратами Марс-4, −5, −6 и −7 были исследованы атмосфера и поверхность Марса, получены первые цветные снимки его поверхности.

18 и 26 апреля 1961 года[9] осуществлена первая в мире успешная радиолокация планеты Венеры. Локацией Венеры было установлено, что астрономическая единица равна (149 599 300 ± 2 000) км.

Почтовый блок СССР 1986 года, посвящённый исследованию кометы Галлея с изображением АДУ-1000

В июне 1962 года, после повышения чувствительности приёмной аппаратуры, произведена первая в мире радиолокация Меркурия. Она подтвердила значение астрономической единицы, полученное при локации Венеры. При локации Меркурия был определён коэффициент отражения от поверхности планеты равный 3—7 %. Годом позже такая же локация была проведена и в США.

В октябре-ноябре 1962 года проведено повторное радиолокационное исследование Венеры. Повторная радиолокация позволила уточнить значение Астрономической единицы: оно оказалось (149 598 100 ± 750) км. При локации Венеры был также определён коэффициент отражения от поверхности этой планеты. Он оказался равен 12—18 %. Это означало, что на поверхности Венеры есть твёрдые породы, близкие по свойствам к скальным породам Земли.

19 и 24 ноября 1962 года была осуществлена радиосвязь через планету Венера. Инициатором этой радиопередачи был О. Н. Ржига. Для модуляции использовался код Морзе, длительность точки составляла 10 сек, тире — 30 сек, в десятисекундных паузах излучалось номинальное значение несущей частоты (λ=39 см), при передаче «точек» и «тире» излучаемая частота увеличивалась на 62,5 Гц, общее время радиопередачи составило 8 минут. 19 ноября было передано телеграфным кодом слово «МИР», через 4 минуты 32,7 секунды отражённый от Венеры сигнал был принят на Земле. 24 ноября было послано радиотелеграфное сообщение из слов «ЛЕНИН», «СССР» и отражённый от поверхности Венеры сигнал был принят через 4 минуты 44,7 секунды. Эти сообщения являются первыми радиопередачами для внеземных цивилизаций в истории человечества. Сигнал, пройдя мимо Венеры, отправился к звезде HD131336 из созвездия Весы[10].

В феврале 1963 года проведена радиолокация Марса. В это время Марс находился от Земли в 100 млн км. Коэффициент отражения оказался меньше, чем у Венеры, но временами достигал 15 %. Это указывало, что на Марсе есть ровные горизонтальные участки размером более километра.

Дальнейшее усовершенствование планетного локатора позволило в сентябре — октябре 1963 года провести локацию планеты Юпитер. Юпитер в этот период находился в 600 млн км от Земли. Радиоволны, посланные к Юпитеру, возвращались на Землю через 1 час 6 минут, пройдя 1 млрд 200 млн км. Коэффициент отражения поверхности Юпитера более 10 %. Эксперимент показал, что радиосвязь с помощью АДУ-1000 возможна и на расстоянии в несколько сот миллионов километров.

С 1962 года на антеннах АДУ-1000 начались наблюдения на волнах 32 и 7 см отделом радиоастрономии ГАИШ[11]. В конце 1950-х центральной проблемой астрономии был вопрос об источниках релятивистских частиц. Наиболее вероятным источником была Крабовидная туманность. Наблюдения 16 апреля 1964 года на АДУ-1000 покрытия Луной туманности обнаружили дифракционную картинку, соответствующую компактному радиоисточнику. Было зафиксировано изменение яркости компактной области в юго-восточной части Крабовидной туманности, излучение которой существенно снизилось на следующий день. В дальнейшем было показано, что эта особенность определяется облаком релятивистских электронов, проходящих в тангенциальном направлении магнитной силовой трубки. Также исследовались радиоисточники в скоплениях галактик, радиоизлучение нормальных галактик и планетарных туманностей, двойные радиоисточники. Из полученных в то время результатов в историческом плане особый интерес представляет обнаружение Г. Б. Шоломицким переменности потока радиоизлучения СТА-102[12].

1995—2000 год — работа с «Интербол-1»[13].

16 ноября 1996 года — работы с КА «Марс-96»[14].

В 2004 году с помощью АДУ-1000 изучалось влияние корональных дыр на геопроявления[15].

История[править | править код]

История советских Центров дальней космической связи началась в 1960 году с создания комплекса «Плутон» в Крыму, возле города Евпатория.

Для обеспечения устойчивой связи с космическими аппаратами внутри Солнечной системы необходимо было построить параболическую антенну диаметром около 100 метров. Сооружение такого типа антенн занимает 5—7 лет[5]. Первые же пуски советских космических аппаратов к Марсу планировались на октябрь 1960 года. Главный конструктор СКБ-567 Евгений Губенко принял оригинальное предложение инженера Ефрема Коренберга построить вместо одной большой параболической антенны систему из восьми стандартных 16-метровых параболоидов. Металлоконструкции механизмов и приводов были использованы готовые от опорно-поворотных устройств орудийных башен линкоров.

Евпаторийский центр дальней космической связи (НИП-16), строили военные из Евпаторийского управления начальника работ (УНР) под командованием полковника В. Я. Левина. Сооружение первой очереди «объекта МВ» («МВ» расшифровывается как «Марс-Венера»)[16] началось в марте 1960 года[4].

Крымский полуостров был очень удобен для строительства научно-измерительных пунктов (НИПов)[4][5][14]:

  • Крым — самая западная часть СССР, которая первая встречала спутники на первом витке после старта с Байконура (при обычном наклонении орбиты советских космических аппаратов, равном 65°)
  • В западной равнинной части Крыма, где строился «объект МВ», очень чистый горизонт, позволяющий устанавливать устойчивую связь с космическими аппаратами уже при угле места 7°.
  • Здесь наибольшее количество солнечных дней в году и наименьшее количество осадков, даже в сравнении с рядом расположенной Евпаторией.
  • Близость к экватору позволяла увеличить зону охвата и обеспечить устойчивую связь с космическими аппаратами.
  • Мягкий климат, без сильного перепада температур.
  • Развитая инфраструктура: аэродромы, железные и автомобильные дороги, линии электропередач, что позволяло уменьшить капиталовложения и ускорить строительство, и при этом, несмотря на непосредственную близость к черноморским пляжам, в этом районе побережье было малолюдным даже в пик сезона.

Работы шли быстрыми темпами и уже через 7 месяцев, в сентябре 1960 года на 2-й площадке возвышалась приёмная АДУ-1000.[5] Но старты не состоялись из-за аварий ракет-носителей.

В декабре 1960 года антенны были откалиброваны по космическим радиоисточникам. Практическая работа комплекса началась со станцией «Венера-1», запущенной в феврале 1961 года. Затем был запуск в ноябре 1962 года станции «Марс-1». В 1970-х годах успешно велись работы с космическими аппаратами «Венера» и «Марс». Позже «объект МВ» начинает работать и с пилотируемыми космическими аппаратами и является основным центром управления полётами, до постройки центра управления полётами в городе Королёв, после чего выполнял функции запасного центра управления полётами. До постройки в 1964 году в Голдстоуне (США) 64-метровой антенны, комплекс «Плутон» был самой мощной системой дальней космической связи.

Современное состояние[править | править код]

Украина[править | править код]

Предложено создание без особых капитальных вложений импульсного радиолокатора на основе радиотехнических систем Национального центра управления и испытания космических средств Украины (АДУ-1000 — приёмная антенна и П-400 — излучающая антенна) для прогноза астероидной опасности, каталогизации космического мусора, исследования солнечной короны, околосолнечной и межпланетной плазмы, а также для радиоастрономических исследований дальнего космоса. Показано, что при использовании крупногабаритных антенн АДУ-1000 и П-400 такой радиолокатор при длине волны около 30 см на высотах около 100 км обнаруживает объекты с минимальными размерами около 0,7 см.[17]

Однако анализ показывает, что для астрометрии околоземных астероидов и прогноза астероидной опасности предлагаемый в «Вестнике ХНУ» комплекс П-400 (излучение) → АДУ-1000 (приём) непригоден. Во-первых, его энергетический потенциал (ЭП) более чем в 50 раз ниже ЭП разнесённой системы 6-см диапазона РТ-70 — РТ-100 (70-м антенна и передатчик в Евпатории — 100-м антенна и приёмник в Эффельсберге, Германия), который использовался при радиолокации астероида (4179) Таутатис в 1992 году. При этом, даже система РТ-70 — РТ-100 смогла получить эхосигналы от Таутатиса лишь потому, что астероид проходил от Земли на расстоянии всего 0,024 астрономической единицы, что случается крайне редко. Во-вторых, разнесённые системы вообще малопригодны для прецизионной астрометрии из-за больших систематических ошибок при измерениях запаздывания эхо-сигналов.[18]

Используемый комплексом «Плутон» частотный диапазон наиболее представителен в радиоизлучении Солнца, оптимален для построения трёхмерных радиоизображений Солнца и исследований околосолнечной плазмы, радиогалактик и квазаров. На диске Солнца пространственное разрешение радиотелескопа около 1000 км.[15][17]

Использование современной элементной базы и компьютерных технологий позволяет получить существенный экономический эффект (прежде всего каталогизация космического мусора, позволяющая безопасно выводить на орбиту КА) используя имеющиеся законсервированные комплексы антенных устройств.

В ноябре 2013 года антенна на 2-й площадке утилизирована для покрытия финансовой задолженности Центра.

После присоединения Крыма к Российской Федерации[править | править код]

В 2014 году над центром были подняты Государственный Флаг Российской Федерации и флаг Войск воздушно-космической обороны Российской Федерации. Центр вошёл в структуру войск воздушно-космической обороны Российской Федерации. Во время крымского кризиса, по словам военнослужащего центра Артура Агасиева, до вхождения в состав России не лояльным к новой украинской власти офицерам и их семьям угрожали убийством и депортацией. Также, одним из офицеров ВС Украины была украдена и вывезена в Киев вся документация НЦУИКС[19]. Свыше 90 % личного состава военных центра перешли на службу в Российскую армию и прошли переподготовку в вузах Войск воздушно-космической обороны.

В начале 2015 года НЦУИКС был реорганизован в 40-й отдельный командно-измерительный комплекс Войск ВКО Российской Федерации. На базе научного центра заново сформирована войсковая часть 81415. Боевое знамя части в торжественной обстановке было вручено 22 февраля 2015 г. на Театральной площади Евпатории командующим Войсками воздушно-космической обороны генерал-лейтенантом Александром Головко командиру 40-го ОКИК полковнику Роману Винокурову[20].

В Министерстве обороны России заявили, что на момент вхождения Крыма в состав России комплекс пребывал в плачевном состоянии — из всех сооружений в рабочем состоянии была лишь одна антенна для будущего управления украинским космическим аппаратом «Лыбидь», запуск которого по сей день не состоялся. За время украинской эксплуатации НЦУИКС не нашёл для него применения и уникальные площадки комплекса были разграблены. В штабе войск ВКО заявили, что практически сразу приступили к оснащению объекта новыми командно-измерительными системами управления космическими аппаратами и комплексами системы контроля космического пространства. Поскольку сами антенные системы практически не стареют, то, заменив устаревшую и вышедшею из строя приёмо-передающую аппаратуру на современную, можно получить новый инструмент[21].

Стал частью Главного испытательного центра им. Германа Титова.

Центр проходит модернизацию, Минобороны России утверждена программа по развитию комплекса до 2020 года. По ней заложены средства по модернизации, наращиванию новой техники и обучению личного состава[22].

Весной 2017 года было объявлено, что 40-й ОКИК за 3 года модернизации получил 10 современных комплексов взамен устаревшего советского оборудования. Центр стал частью российской системы «ГЛОНАСС». Подключение к ней новейшего оборудования ЦДКС позволило улучшить точность определения местоположения на карте на 30%.

Центр дальней космической связи был оборудован новейшей российской командно-измерительной системой «Фазан МТС», имеющей радиус действия от 100 до 40 000 км. Данная система решает задачи по управлению всей орбитальной группировкой России.[23][24]

См. также[править | править код]

Примечания[править | править код]

  1. Плутон
  2. 1 2 3 Глава 8. Наземные антенные системы // Радиосистемы межпланетных космических аппаратов : сборник / Под ред. А. С. Винницкого. М.: Радио и связь, 1993. С. 139—175.
  3. 1 2 3 Don P. Mitchel. Soviet Telemetry Systems. Deep-Space Communication Centers
  4. 1 2 3 4 5 6 Из истории великой цивилизации
  5. 1 2 3 4 5 Черток Б. Е. Глава 5. Обратная сторона // Книга 2. Ракеты и люди.
  6. Николай Митрахов. Королёв и Украина. Ракетно-космические страницы. Национальное космическое агентство Украины. Проверено 11 сентября 2009. Архивировано 6 апреля 2012 года.
  7. Г. А. ХЕТАГУРОВ. НЕТ ПРОРОКА В СВОЕМ ОТЕЧЕСТВЕ
  8. Sven Grahn. ADU-1000 antennas at Yevpatoria
  9. A History of Planetary Radar Astronomy
  10. А. Л. Зайцев. Радиовещание для внеземных цивилизаций Архивировано 24 мая 2015 года.
  11. ОТДЕЛ РАДИОАСТРОНОМИИ ГАИШ Архивировано 28 июля 2007 года.
  12. Sholomitsky, G. B. (1965). «Variability of the Radio Source CTA-102». Information Bulletin on Variable Stars 83: 1. Bibcode1965IBVS...83....1S.
  13. Проект «Интербол». Наземный комплекс управления
  14. 1 2 Запуск и полёт станции «Марс-96»
  15. 1 2 СОСТОЯЛОСЬ ЗАСЕДАНИЕ НТС НЦУИКС
  16. ОБЪЕКТ «МВ» «Секретные материалы» № 2, январь 2006
  17. 1 2 А. Ф. Сорокін, А. А. Сорокін, М. М. Горобець, О. В. Соколова. Радіолокаційний комплекс для позаатмосферних досліджень Вісник Харківського національного університету імені В. Н. Каразіна. Радіофізика та електроніка, № 834. 2008 год. стр. 25-30
  18. Главе 4. 4. Радиолокация астероида (4179) Таутатис на волне 6 см // А. Л. Зайцев. Радиолокационные исследования астероидов, сближающихся с Землёй : Диссертация. — ФИРЭ им. В. А. Котельникова РАН, 1997.
  19. Крым: космический форпост
  20. Боевое знамя — «космическому» полку Крыма!
  21. В Крыму устанавливают связь с инопланетянами
  22. Крымская космическая группировка обрела Боевое Знамя>
  23. Под Евпаторией возродили Центр дальней космической связи
  24. В Евпатории модернизировали центр космической связи

Ссылки[править | править код]