Вселенная Фридмана

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Космология
Ilc 9yr moll4096.png
Изучаемые объекты и процессы
История Вселенной
Наблюдаемые процессы
Теоретические изыскания

Вселе́нная Фри́дмана (метрика Фридмана — Леметра — Робертсона — Уокера) — одна из космологических моделей, удовлетворяющих полевым уравнениям общей теории относительности (ОТО), первая из нестационарных моделей Вселенной. Получена Александром Фридманом в 1922. Модель Фридмана описывает однородную изотропную в общем случае нестационарную Вселенную с веществом, обладающую положительной, нулевой или отрицательной постоянной кривизной. Эта работа учёного стала первым основным теоретическим развитием ОТО после работ Эйнштейна 1915—1917 гг.

История открытия[править | править вики-текст]

Решение Фридмана было опубликовано в авторитетном физическом журнале Zeitschrift für Physik в 1922[1] и 1924 (для Вселенной с отрицательной кривизной)[2]. Решение Фридмана было вначале отрицательно воспринято Эйнштейном (который предполагал стационарность Вселенной и даже ввёл с целью обеспечения стационарности в полевые уравнения ОТО так называемый лямбда-член), однако затем он признал правоту Фридмана. Тем не менее, работы Фридмана (умершего в 1925) остались вначале незамеченными.

Нестационарность Вселенной была подтверждена открытием зависимости красного смещения галактик от расстояния (Эдвин Хаббл, 1929). Независимо от Фридмана, описываемую модель позднее разрабатывали Леметр (1927), Робертсон и Уокер (1935), поэтому решение полевых уравнений Эйнштейна, описывающее однородную изотропную Вселенную с постоянной кривизной, называют моделью Фридмана — Леметра — Робертсона — Уокера.

Эйнштейн не раз подтверждал, что начало теории расширяющейся Вселенной положил А. А. Фридман.

В творчестве А. А. Фридмана работы по теории относительности могли бы на первый взгляд показаться довольно внезапными. Ранее в основном он работал в области теоретической гидромеханики и динамической метеорологии.

Усвоение Фридманом ОТО было весьма интенсивным и в высшей степени плодотворным. Совместно с Фредериксом он взялся за капитальный труд «Основы теории относительности», в которой предполагалось изложить «достаточно строго с логической точки зрения» основы тензорного исчисления, многомерной геометрии, электродинамики, специального и общего принципа относительности.

Книга Фредерикса и Фридмана «Основы теории относительности» — это обстоятельное, подробное изложение теории относительности, основанное на весьма солидном математическом фундаменте геометрии общей линейной связности на многообразии произвольной размерности и теории групп. Исходной для авторов оказывается геометрия пространства-времени.

В 1923 г. была опубликована популярная книга Фридмана «Мир как пространство и время», посвящённая ОТО и ориентированная на довольно подготовленного читателя. В 1924 г. появилась статья Фридмана, рассматривавшая некоторые вырожденные случаи общей линейной связности, которые, в частности, обобщают перенос Вейля и, как считали авторы, «может быть, найдут применение в физике».

И, наконец, главным результатом работы Фридмана в области ОТО стала космологическая нестационарная модель, носящая теперь его имя.

По свидетельству В. А. Фока, в отношении Фридмана к теории относительности преобладал подход математика: «Фридман не раз говорил, что его дело — указать возможные решения уравнений Эйнштейна, а там пусть физики делают с этими решениями, что они хотят»[3].

Изначально, уравнения Фридмана использовали уравнения ОТО с нулевой космологической постоянной. И модели, основанные на них, безоговорочно доминировали (помимо короткого всплеска интереса к другим моделям в 1960-е гг.) вплоть до 1998 года[4]. В тот год вышли две работы, использовавшие в качестве индикаторов расстояния — сверхновые типа Ia. В них было убедительно показано, что на больших расстояниях закон Хаббла нарушается и Вселенная расширяется ускоренно, что требует наличия тёмной энергии, известные свойства которой соответствуют Λ-члену.

Современная модель, так называемая «модель ΛCDM», по прежнему является моделью Фридмана, но уже с учётом как космологической постоянной, так и тёмной материи.

Метрика Фридмана-Робертсона-Уокера[править | править вики-текст]

Вид символов Кристоффеля
Производные выражения от символов Кристоффеля

Геометрия однородной изотропной Вселенной — это геометрия однородного и изотропного трёхмерного многообразия. Метрикой таких многообразий является метрика Фридмана-Робетсона-Уокера (FWT)[5]:

χ — так называемое сопутствующие расстояние или конформное, не зависящее от времени, в отличии от масштабного фактора a, t — время в единицах скорости света, sинтервал.

,

где k принимает значение:

  • k=0 для трёхмерной плоскости
  • k=1 для трёхмерной сферы
  • k=-1 для трёхмерной гиперсферы

x — трёхмерный радиус-вектор в квазидекартовых координатах: .  исправить

Или в тензорной записи:

, где компоненты метрического тензора равны:
,

где пробегают значения 1…3, , а  — временная координата.

Основные уравнения[править | править вики-текст]

Если же выражение для метрики подставить в уравнения ОТО для идеальной жидкости, то получим следующую систему уравнений:

  • Уравнение энергии
  • Уравнение движения
  • Уравнение неразрывности

где Λ — космологическая постоянная, ρ — средняя плотность Вселенной, P — давление, с — скорость света.

Приведенная система уравнений допускает множество решений, в зависимости от выбранных параметров. На самом деле значение параметров фиксированы только на текущий момент и с течением времени эволюционируют, поэтому эволюцию расширения описывает совокупность решений.[5]

Объяснение закона Хаббла[править | править вики-текст]

Допустим есть источник, расположенный в сопутствующей системе на расстоянии r1 от наблюдателя. Приемная аппаратура наблюдателя регистрирует фазу приходящей волны. Рассмотрим два интервала времени δt1 и δt2 между точками с одной и той же фазой[5]:

С другой стороны для световой волны в принятой метрике выполняется равенство:

Проинтегрировав это уравнение получим:

Учитывая что в сопутствующих координатах r[прояснить] не зависит от времени, и малость длины волны относительно радиуса кривизны Вселенной, получим соотношение:

Если теперь его подставить в первоначальное соотношение:

Разложим a(t) в ряд Тейлора с центром в точке a(t1) и учтем члены только первого порядка:

После приведения членов и домножения на c:

Соответственно, константа Хаббла:

Следствия[править | править вики-текст]

Определение кривизны пространства. Понятие критической плотности[править | править вики-текст]

Подставив в уравнение энергии выражение для постоянной Хаббла, приведем его к виду:

,

где , , [прояснить],
плотность вещества и темной энергии, отнесенная к критической, сама критическая плотность и вклад кривизны пространства соответственно. Если переписать уравнение следующим образом

,

то станет очевидно, что:

Эволюция плотности вещества. Уравнение состояния[править | править вики-текст]

Стадия Эволюция
масштабного фактора
Параметр Хаббла
Инфляционная
Радиационное доминирование
p=ρ/3
Пылевая стадия
p=0
-доминирование
p=-ρ

Подставив в уравнение неразрывности уравнение состояния в виде

[прояснить](1)

Получим его решение:

Для разных случаев эта зависимость выглядит по-разному:

Случай холодного вещества (например пыль) p = 0

Случай горячего вещества (например излучение) p = ρ/3

Случай энергии вакуума p = -ρ

Благодаря этому, влиянием Ωk на ранних этапах можно пренебречь, то есть считать Вселенную плоской (так как k=0. Одновременно, разная зависимость плотности компонентов от масштабного фактора позволяет выделить различные эпохи, когда расширение определяется только тем или иным компонентом, представленных в таблице.

Также стоить отметить, что если ввести некую квинтэссенцию из плотности темной энергии и плотности барионной и принять, что оно подчиняется выражению (1), то пограничным значением является

При превышении этого параметра расширение замедляется, при меньшем — ускоряется.

Динамика расширения[править | править вики-текст]

Λ < 0 Если значение космологической постоянной отрицательно, то действуют только силы притяжения и более никаких. Правая часть уравнения энергии будет неотрицательной только при конечных значениях R. Это означает, что при некотором значении Rc Вселенная начнет сжиматься при любом значении k и вне зависимости от вида уравнения состояния[8].

Λ = 0

В случае, если космологическая постоянная равна нулю, то эволюция при заданном значении H0 целиком и полностью зависит от начальной плотности вещества[5]:

Если , то расширение продолжается бесконечно долго, в пределе с асимптотически стремящейся к нулю скоростью. Если плотность больше критической, то расширение Вселенной тормозится и сменяется сжатием. Если меньше, то расширение идёт неограниченно долго с ненулевым пределом H.

Λ > 0

Если Λ>0 и k≤0, то Вселенная монотонно расширяется, но в отличие от случая с Λ=0 при больших значениях R скорость расширения растёт[8]:

При k=1 выделенным значением является . В этом случае существует такое значение R, при котором и , то есть Вселенная статична.

При Λ>Λc скорость расширения убывает до какого-то момента, а потом начинает неограниченно возрастать. Если Λ незначительно превышает Λc, то на протяжении некоторого времени скорость расширения остаётся практически неизменной.

В случае Λ<Λc всё зависит от начального значения R, с которого началось расширения. В зависимости от этого значения Вселенная либо будет расширяться до какого-то размера, а потом сожмется, либо будет неограниченно расширяться.

ΛCDM[править | править вики-текст]

Космологические параметры по данным WMAP и Planck
WMAP[9] Planck[10]
Возраст Вселенной t0, млрд лет 13,75±0,13 13,81±0,06
Постоянная Хаббла H0, (км/с)/Мпк 71,0±2,5 67,4±1,4
Плотность барионной материи Ωbh2 0,0226±0,0006 0,0221±0,0003
Плотность тёмной материи Ωсh2 0,111±0,006 0,120±0,003
Общая плотность Ωt 1,08+0,09-0,07 1,0±0,02
Плотность барионной материи Ωb 0,045±0,003
Плотность тёмной энергии ΩΛ 0,73±0,03 0,69±0,02
Плотность тёмной материи Ωc 0,22±0,03

ΛCDM — это современная модель расширения, являющаяся моделью Фридмана, включающая в себя помимо барионной материи, темную материю и темную энергию

Возраст Вселенной[править | править вики-текст]

Теоретическое описание[править | править вики-текст]

Время с начала расширения, называемая также возрастом Вселенной[11] определяется следующим образом:

 исправить

Наблюдательные подтверждения сводятся к подтверждению самой модели расширения с одной стороны и предсказываемой ею моменты начала различных эпох, а с другой, чтоб возраст самых старых объектов не превышал получающийся из модели расширения возраст всей Вселенной.

Данные наблюдений[править | править вики-текст]

Не существует прямых измерений возраста Вселенной, все они измеряются косвенно. Все методы можно разделить на две категории[12]:

  1. Определение возраста на основе моделей эволюции у самых старых объектов: старых шаровых скоплений и белых карликов.
    В первом случае метод основан на факте, что звезды в шаровом скоплении все одного возраста, опираясь на теорию звёздной эволюции, строятся изохроны на диаграмме «цвет — звёздная величина», то есть кривые равного возраста для звёзд различной массы. Сопоставляя их с наблюдаемым распределением звёзд в скоплении, можно определить его возраст.
    Метод имеет ряд своих трудностей. Пытаясь их решить, разные команды, в разное время получали разные возраста для самых старых скоплений, от ~8 млрд лет[13], до ~ 25 млрд лет[14].
    Белые карлики имеют приблизительно одинаковую массу звёзд-предшественниц, а значит — и приблизительно одинаковую зависимость температуры от времени. Определив по спектру белого карлика его абсолютную звёздную величину на данный момент и зная зависимость время—светимость при остывании, можно определить возраст карлика[15]
    Однако данный подход связан как с большими техническими трудностями, — белые карлики крайне слабые объекты, — необходимо крайне чувствительные инструменты, чтоб их наблюдать. Первым и пока единственным телескопом, на котором возможно решение данной задачи является космический телескоп им. Хаббла. Возраст самого старого скопления по данным группы, работавшей с ним: млрд лет[15], однако, результат оспаривается. Оппоненты указывают, что не были учтены дополнительные источники ошибок, их оценка млрд лет[16].
  2. Ядерный метод. В его основе лежит тот факт, что разные изотопы имеют разный период полураспада. Определяя текущие концентрации различных изотопов у первичного вещества можно определить возраст элементов в неё входящих.
    Так у звезды CS31082-001, принадлежащей звёздному населению типа II, были обнаружены линии и измерены концентрации в атмосфере тория и урана. Эти два элемента имеют различный период полураспада, поэтому со временем их соотношение меняется, и если как-то оценить первоначальное соотношение обильностей, то можно определить возраст звезды. Оценить можно двояким способом: из теории r-процессов, подтверждённой как лабораторными измерениями, так и наблюдениями Солнца; или можно пересечь кривую изменения концентраций за счёт распада и кривую изменения содержания тория и урана в атмосферах молодых звёзд за счёт химической эволюции Галактики. Оба метода дали схожие результаты: 15,5±3,2[17] млрд лет получены первым способом, [18] млрд лет — вторым.

Виды расстояний.[править | править вики-текст]

Сравнение кривых для различных видов расстояний

Теоретическое описание[править | править вики-текст]

В космологии на больших расстояниях непосредственно измеряемых величин всего три - звездная величина, характеризующая блеск, угловой размер и красное смещение. Поэтому, для сравнения с наблюдениями вводятся две зависимости:

  • Угловой размер от красного смещения, называемого угловым расстоянием:
  • Блеск от красного смещения - называемого фотометрическим расстоянием:

Также в научно-популярной литературе можно встретить еще три вида расстояний: расстояние между объектами на текущей момент, расстояние между объектами на момент испускания принятого нами света и расстояние, которое прошел свет.

Данные наблюдений[править | править вики-текст]

Для измерения фотометрического расстояния необходим источник известной светимости, так называемая стандартная свеча. Для космологических масштабов в качестве таковой берутся сверхновые типа Ia. Они возникают как следствие термоядерного взрыва белого карлика приблизившегося к пределу Чандрасекара.

Сфера Хаббла. Горизонт частиц. Горизонт событий[править | править вики-текст]

Также преимущественно в научно-популярной литературе используется термин "сфера Хаббла" - это сфера чей радиус равен расстоянию при котором скорость убегания равна скорости света.[19][20]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Friedmann, A: Über die Krümmung des Raumes (О кривизне пространства), Z. Phys. 10 (1922) 377—386.
  2. Friedmann, A: Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes (О возможности Вселенной с постоянной отрицательной кривизной пространства), Z. Phys. 21 (1924) 326—332.
  3. Фок В.А. (1963). «Работы А. А. Фридмана по теории тяготения Эйнштейна». УФН LXXX (3): 353–356. Проверено 2012-07-04.
  4. О непопулярности моделей с космологической постоянной красноречиво говорит тот факт, что Вайнберг в своей книге «Космология и гравитация» (на русском языке издана в 1975 году) параграф о моделях с космологической постоянной относит в раздел вместе с наивными моделями и моделями стационарной Вселенной, отводя на описание 4 страницы из 675.
  5. 1 2 3 4
    • А.В. Засов.,К.А. Постнов. Общая Астрофизика. — Фрязино: Век 2, 2006. — С. 421-432. — 496 с. — ISBN 5-85099-169-7.
    • Д.С. Горбунов, В.А. Рубаков. Введение в теорию ранней Вселенной: Теория горячего Большого взрыва.. — Москва: ЛКИ, 2008. — С. 45-80. — 552 с. — ISBN 978-5-382-00657-4.
    • Стивен Вайнберг. Космология. — Москва: УРСС, 2013. — С. 21-81. — 608 с. — ISBN 978-5-453-00040-1.
  6. Стивен Вайнберг. Космология. — Москва: УРСС, 2013. — С. 57-59. — 608 с. — ISBN 978-5-453-00040-1.
  7. Д.С. Горбунов, В.А. Рубаков. Введение в теорию ранней Вселенной: Теория горячего Большого взрыва.. — Москва: ЛКИ, 2008. — С. 63. — 552 с. — ISBN 978-5-382-00657-4.
  8. 1 2 Майкл Роуэн-Робинсон. Космология = Cosmology / Перевод с английского Н.А. Зубченко. Под научной редакцией П.К. Силаева. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2008. — С. 96-102. — 256 с. — ISBN 976-5-93972-659-7.
  9. Jarosik, N., et.al. (WMAP Collaboration). Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results (PDF). nasa.gov. Проверено 4 декабря 2010. Архивировано из первоисточника 16 августа 2012. (from NASA’s WMAP Documents page)
  10. Planck Collaboration Planck 2013 results. XVI. Cosmological parameters. — arXiv:1303.5076.
  11. Астронет > Вселенная
  12. Donald D. Clayton. COSMOLOGY, COSMOCHRONOLOGY.
  13. Gratton Raffaele G., Fusi Pecci Flavio, Carretta Eugenio и др Ages of Globular Clusters from HIPPARCOS Parallaxes of Local Subdwarfs. — Astrophysical Journal, 1997.
  14. Peterson Charles J. Ages of globular clusters. — Astronomical Society of the Pacific, 1987.
  15. 1 2 Harvey B. Richer et al. Hubble Space Telescope Observations of White Dwarfs in the Globular Cluster M4. — Astrophysical Journal Letters, 1995.
  16. Moehler S, Bono G. White Dwarfs in Globular Clusters. — 2008.
  17. Schatz Hendrik, Toenjes Ralf, Pfeiffer Bernd Thorium and Uranium Chronometers Applied to CS 31082-001. — The Astrophysical Journal, 2002.
  18. N. Dauphas URANIUM-THORIUM COSMOCHRONOLOGY. — 2005.
  19. Сергей Попов. Сверхсветовое разбегание галактик и горизонты Вселенной: путаница в тонкостях.
  20. TM Davis & CH Linewater Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the universe. — 2003. — arXiv:astro-ph/0310808.

Ссылки[править | править вики-текст]