Уравнение состояния

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Уравнение состояния
Thermodynamics navigation image.svg
Статья является частью серии «Термодинамика».
Уравнение состояния идеального газа
Уравнение Ван-дер-Ваальса
Уравнение Дитеричи
Уравнение Битти — Бриджмена
Уравнение состояния Редлиха — Квонга
Уравнение состояния Барнера — Адлера
Уравнение состояния Суги — Лю
Уравнение состояния Бенедикта — Вебба — Рубина
Уравнение состояния Ли — Эрбара — Эдмистера
Разделы термодинамики
Начала термодинамики
Уравнение состояния
Термодинамические величины
Термодинамические потенциалы
Термодинамические циклы
Фазовые переходы
править
См. также «Физический портал»

Уравне́ние состоя́ния — уравнение, связывающее между собой термодинамические (макроскопические) параметры системы, такие, как температура, давление, объём, химический потенциал и др. Уравнение состояния можно написать всегда, когда можно применять термодинамическое описание явлений. При этом реальные уравнения состояний реальных веществ могут быть крайне сложными.

Уравнение состояния системы не содержится в постулатах термодинамики и не может быть выведено из неё. Оно должно быть взято со стороны (из опыта или из модели, созданной в рамках статистической физики). Термодинамика же не рассматривает вопросы внутреннего устройства вещества.

Заметим, что соотношения, задаваемые уравнением состояния, справедливы только для состояний термодинамического равновесия.

Виды уравнений состояния[править | править исходный текст]

Термическое уравнение состояния[править | править исходный текст]

Термическое уравнение состояния связывает макроскопические параметры системы. Для системы с постоянным числом частиц его общий вид можно записать так:

f(P,\;V,\;T)=0.

Таким образом, задать термическое уравнение состояния значит конкретизировать вид функции f.~

Калорическое уравнение состояния[править | править исходный текст]

Калорическое уравнение состояния показывает, как внутренняя энергия выражается через давление, объем и температуру. Для системы с постоянным числом частиц оно выглядит так:

U=U(P,\;V,\;T)

или, учитывая, что давление можно выразить из термического уравнения:

U=U(V,\;T).

Каноническое уравнение состояния[править | править исходный текст]

Основная статья: Термодинамические потенциалы.

Каноническое уравнение представляет собой выражение для одного из термодинамических потенциалов (внутренней энергии, энтальпии, свободной энергии или потенциала Гиббса) через независимые переменные, относительно которых записывается его полный дифференциал.

  • U=U(S,\;V) (для внутренней энергии),
  • H=H(S,\;P) (для энтальпии),
  • F=F(T,\;V) (для энергии Гельмгольца),
  • G=G(T,\;P) (для потенциала Гиббса).

Каноническое уравнение, независимо от того, в каком из этих четырех видов оно представлено, содержит полную информацию о термических и калорических свойствах термодинамической системы (предполагается, что известно и определение термодинамического потенциала, такое, как F = U − TS).

Примеры[править | править исходный текст]

См. также[править | править исходный текст]

Литература[править | править исходный текст]

  • Базаров И. П. Термодинамика. — М.: Высшая школа, 1991. — 376 с.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. — Изд. 2-е, испр. — М.: Едиториал УРСС, 2003. — 120 с.
  • Квасников И. А. Термодинамика и статистическая физика. Т. 1: Теория равновесных систем: Термодинамика. Том 1. — Изд. 2-е, испр. и доп. — М.: УРСС, 2002. — 240 с.
  • Сивухин Д. В. Общий курс физики. — М.: Наука, 1975. — Т. II. Термодинамика и молекулярная физика. — 519 с.