Гипергеометри́ческая фу́нкция (функция Гаусса) — одна из специальных функций. Определяется внутри круга как суммагипергеометрического ряда
а при — как её аналитическое продолжение. Она является решением линейного обыкновенного дифференциального уравнения (ОДУ) второго порядка называемого гипергеометрическим уравнением. Гипергеометрический ряд может рассматриваться как обобщение геометрического ряда (отсюда название); частный случай гипергеометрической функции является суммой геометрического ряда.
Термин «гипергеометрический ряд» впервые был использован Джоном Валлисом в 1655 году в книге Arithmetica Infinitorum. Термин этот относился к ряду, общая формула членов которого имеет вид[1]
Гипергеометрические ряды изучались Леонардом Эйлером, и более подробно Гауссом[2]. В XIX веке изучение было продолжено Эрнстом Куммером, а Бернхард Риман определил гипергеометрическую функцию через уравнение, которому она удовлетворяет.
Когда параметр не равен нулю и отрицательным целым числам регулярное в нуле решение уравнения Эйлера будет можно записать через ряд, называемый гипергеометрическим:
Эту функцию называют гипергеометрической. Часто применяют обозначение (символ Похгаммера)
где — гамма-функция (при n = 0 по определению (p)n = 1). Тогда гипергеометрическую функцию можно представить в виде
Обозначение указывают, что есть два параметра, a и b, «идущие в числитель», и один, c, «идущий в знаменатель». На границе ряд, через который определяется гипергеометрическая функция, абсолютно сходится, если действительная часть суммы , условно сходится при , и расходится, если . Второе линейно независимое решение дифференциального уравнения Эйлера имеет вид
Оно имеет особую точку при и справедливо при всех неположительных .[3]
Интегральное представление для гипергеометрической функции при (формула Эйлера) может быть записано следующим образом:
где — гамма-функция Эйлера. Это выражение представляет собой однозначную аналитическую функцию на комплексной -плоскости с разрезом вдоль действительной оси от до и обеспечивает аналитическое продолжение на всю комплексную плоскость для гипергеометрического ряда, сходящегося лишь при .
Важным свойством гипергеометрической функции является то, что из неё могут быть получены многие специальные и элементарные функции при определённых значениях параметров и преобразовании независимого аргумента.
Математическая энциклопедия / Под ред. И. М. Виноградова. — М., 1977. — Т. 1.
Бейтмен Г., Эрдейи А. Высшие трансцендентные функции = Higher Transcendental Functions / Пер. Н. Я. Виленкина. — Изд. 2-е. — М.: Наука, 1973. — Т. 1. — 296 с. — 14 000 экз.
Кузнецов Д. С. Специальные функции (рус.). — М.: Высшая школа, 1962.
Kazuhiko Aomoto, Michitake Kita. Theory of Hypergeometric Functions / Transl. by Kenji Iohara. — Springer, 2011. — Vol. 305. — 317 p. — (Springer Monographs in Mathematics Series). — ISBN 9784431539124.
Scott J. F. The mathematical work of John Wallis, D.D., F.R.S., (1616-1703). — American Mathematical Soc., 1981. — 240 p. — (Chelsea Publishing Series). — ISBN 9780828403146.