Гравитация с массивным гравитоном

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Гравитация с массивным гравитоном — название класса теорий гравитации, в которых частица-переносчик взаимодействия (гравитон) предполагается массивной, примером является релятивистская теория гравитации. Характерная особенность таких теорий — проблема разрыва ван Дама — Вельтмана — Захарова (англ. vDVZ (van Dam-Veltman-Zakharov) discontinuity), то есть наличие конечной разности в предсказаниях предела такой теории при массе гравитона, стремящейся к нулю, и теории с безмассовой частицей с самого начала.

Проблемы массивного гравитона в линейном приближении[править | править код]

Основной источник: [1]

Общую теорию относительности в линеаризованном пределе можно сформулировать как теорию безмассового поля спина 2 на пространстве Минковского, описываемого симметричным тензором . Естественным обобщением такой теории является введение в лагранжиан массового члена различного вида. Чаще всего такой член выбирают в виде Паули — Фирца , что как можно показать, наиболее естественно, однако возможен и другой выбор (типа ). При этом уравнения движения для гравитационного поля приобретают вид

где индексы поднимаются и опускаются метрикой Минковского , — оператор д'Аламбера, — гравитационная постоянная Ньютона, тензор энергии-импульса источников поля. Дивергенция этих уравнений в силу законов сохранения должна быть равна 0, что даёт и после подстановки в уравнения и взятия следа

Поэтому имеется две различные возможности: либо — тогда след тензора не является динамической переменной теории, а всецело определяется следом источника , либо и — динамическая переменная. Первый случай даёт обоснование массовому члену Паули — Фирца, но приводит к следующему выражению для гравитационного поля

где введено краткое обозначение для интегрального оператора, обратного дифференциальному , в отличие от

в линеаризованной общей теории относительности. Таким образом, получаемая теория имеет две проблемы при , выражающиеся в неправильной величине гравитационных эффектов от первого слагаемого (1/3 вместо 1/2), а также в стремлении второго из них к бесконечности. Первый отмеченный эффект и носит название разрыва ван Дама — Вельтмана — Захарова по именам первооткрывателей[2][3]. В частности, из-за этого отклонение света в теории составляет 3/4 величины общей теории относительности, а прецессия перигелия — 2/3[2].

Второй подход приводит к появлению новой динамической степени свободы, которая восстанавливает предсказания до нужного уровня, так как общее решение имеет вид

где , и при первый и второй член дают 1/3+1/6=1/2. Но при взаимодействии с материей второй член участвует со знаком, противоположным первому, так что он представляет собой скалярное поле отрицательной энергии (англ. ghostlike field), что вызывает нестабильность теории по отношению к перекачке в него энергии.

Вообще корень проблемы лежит в разложении массивного поля спина 2 по спиральностям и их взаимодействии с веществом. При стремлении массы поля к нулю компоненты спиральности отделяются от остальных, образуя независимое свободное безмассовое поле Максвелла, но компоненты спиральности и остаются зацеплёнными и взаимодействуют с веществом совместно[4]. Ситуацию можно решить добавлением ещё одного скалярного поля, но для восстановления корректного предела оно должно иметь отрицательную энергию, что опять-таки недопустимо в стабильной теории поля.

Более подробный разбор, не ограничивающийся линеаризованным приближением, проведён в работах [4][1].

Примечания[править | править код]

  1. 1 2 Thibault Damour, Ian I. Kogan , Antonios Papazoglou. (2003). «Spherically symmetric spacetimes in massive gravity». Physical Review D. 67: 064009. DOI:10.1103/PhysRevD.67.064009. Проверено 2009-09-03.
  2. 1 2 H. van Dam and M. Veltman. (1970). «Massive and mass-less Yang-Mills and gravitational fields» (PDF). Nuclear Physics B. 22 (2): 397–411. DOI:10.1016/0550-3213(70)90416-5. Архивировано из оригинала (PDF) 2013-06-01. Проверено 2009-09-03. Используется устаревший параметр |deadlink= (справка)
  3. В. И. Захаров. (1970). «Линеаризованная теория гравитации и масса гравитона» (PDF). Письма в ЖЭТФ. 12 (9): 447–449. Проверено 2009-09-03.
  4. 1 2 David G. Boulware, S. Deser. (1972). «Can Gravitation Have a Finite Range?». Physical Review D. 6 (12): 3368–3382. DOI:10.1103/PhysRevD.6.3368. Проверено 2009-09-03.