Биметрические теории гравитации

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Биметрические теория гравитации — альтернативные теории гравитации, в которых вместо одного метрического тензора используются два или более. Часто вторая метрика вводится только при высоких энергиях, в предположении, что скорость света может иметь зависимость от энергии. Наиболее известными примерами биметрических теорий являются теория Розена и релятивистская теория гравитации (последняя — в канонической трактовке).

Биметрическая теория Розена[править | править вики-текст]

В общей теории относительности предполагается, что расстояние между двумя точками в пространстве-времени определяется метрическим тензором. Уравнения Эйнштейна используются затем для расчета формы метрики на основании распределения энергии.

Натан Розен (1940) предложил в каждой точке пространства-времени ввести в дополнение к риманову метрическому тензору евклидов метрический тензор . Таким образом, в каждой точке пространства-времени мы получаем две метрики:

Первый метрический тензор описывает геометрию пространства-времени и, таким образом, гравитационное поле. Второй метрический тензор относится к плоскому пространству-времени и описывает инерционные силы. Символы Кристоффеля, сформированные из и , обозначим и соответственно. определим таким образом, чтобы

Теперь возникают два вида ковариантного дифференцирования: -дифференцирование, основанное на  — обозначается точкой с запятой (;), и 3-дифференцирование на основе  — обозначается символом / (обычные частные производные обозначаются запятой (,)). и будут тензорами кривизны, рассчитываемыми из и соответственно. На основе вышеизложенного подхода, в том случае, когда описывает плоскую пространственно-временную метрику, тензор кривизны равен нулю.

Из (1) следует, что хотя и не являются тензорами, но  — тензор, имеющий такую же форму, как , за исключением того, что обычная частная производная заменяется 3-ковариантной производной. Простой расчет приводит к

Каждый член в правой стороне этого соотношения является тензором. Видно, что от общей теории относительности, можно перейти к новой теории, заменив на , обычное дифференцирование на 3-ковариантное дифференцирование, на , элемент интегрирования на , где , и . Необходимо отметить, что, как только мы ввели в теорию, то в нашем распоряжении оказывается большое число новых тензоров и скаляров. Таким образом, можно получить уравнения поля, отличающиеся от уравнений поля Эйнштейна.

Уравнение для геодезической в биметрической теории относительности (БТО) принимает форму

Из уравнений (1) и (2) видно, что можно считать, что описывает инерциальное поле, поскольку исчезает при помощи подходящего преобразования координат. Свойство же быть тензором не зависит от каких-либо систем координат, и, следовательно, можно полагать, что описывает постоянное гравитационное поле.

Розеном (1973) были найдены биметрические теории, удовлетворяющие принципу эквивалентности. В 1966 г. Розен показал, что введение плоской пространственной метрики в рамках общей теории относительности не только позволяет получить плотность энергии-импульса тензора гравитационного поля, но также позволяет получить этот тензор из вариационного принципа. Уравнение поля в БТО, полученное из вариационного принципа

где

или

и  — тензор энергии-импульса. Вариационный принцип приводит также к связи

Поэтому из (3)

что подразумевает, что пробная частица в гравитационном поле движется по геодезической по отношению к . Физические следствия такой теории, впрочем, не отличаются от общей теории относительности.

При ином выборе исходных уравнений биметрические теории и ОТО различаются в следующих случаях:

  • Распространение электромагнитных волн
  • Внешнее поле звезд высокой плотности
  • Распространение интенсивных гравитационных волн через сильное статическое гравитационное поле


Ссылки[править | править вики-текст]

Теории гравитации
Стандартные теории гравитации Альтернативные теории гравитации Квантовые теории гравитации Единые теории поля
Классическая физика

Релятивистская физика

Принципы

Классические

Релятивистские

Многомерные

Струнные

Прочие