Метод расширения спектра методом прямой последовательности

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Технологии модуляции п о р
Аналоговая модуляция
AM · SSB · ЧМ (FM) · ЛЧМ · ФМ (PM) · СКМ
Цифровая модуляция
АМн · ФМн · КАМ · ЧМн · GMSK
OFDM · COFDM · TCM
Импульсная модуляция
АИМ · ДМ · ИКМ · ΣΔ · ШИМ · ЧИМ · ФИМ
Расширение спектра
FHSS  · DSSS  · CSS
См. также: Демодуляция

Метод прямой последовательности для расширения спектра (DSSS - англ. direct sequence spread spectrum) — широкополосная модуляция с прямым расширением спектра, является одним из трёх основных методов расширения спектра, используемых на сегодняшний день (см. методы расширения спектра). Это метод формирования широкополосного радиосигнала, при котором исходный двоичный сигнал преобразуется в псевдослучайную последовательность, используемую для модуляции несущей. Используется в сетях стандарта IEEE 802.11 и CDMA для преднамеренного расширения спектра передаваемого импульса.

Метод прямой последовательности (DSSS) можно представить себе следующим образом. Вся используемая «широкая» полоса частот делится на некоторое число подканалов — по стандарту 802.11 этих подканалов 11. Каждый передаваемый бит информации превращается, по заранее зафиксированному алгоритму, в последовательность из 11 бит, и эти 11 бит передаются как бы одновременно и параллельно (физически сигналы передаются последовательно), используя все 11 подканалов. При приёме, полученная последовательность бит декодируется с использованием того же алгоритма, что и при её кодировке. Другая пара приёмник-передатчик может использовать другой алгоритм кодировки — декодировки, и таких различных алгоритмов может быть очень много.

Первый очевидный результат применения этого метода — защита передаваемой информации от подслушивания («чужой» DSSS-приёмник использует другой алгоритм и не сможет декодировать информацию не от своего передатчика).

При этом сильно уменьшается отношение уровня передаваемого сигнала к уровню шума, (то есть случайных или преднамеренных помех), так что передаваемый сигнал уже как бы неразличим в общем шуме. Но благодаря его 11-кратной избыточности принимающее устройство все же сумеет его распознать.

Еще одно чрезвычайно полезное свойство DSSS-устройств заключается в том, что благодаря очень низкому уровню мощности своего сигнала они практически не создают помех обычным радиоустройствам (узкополосным большой мощности), так как эти последние принимают широкополосный сигнал за шум в пределах допустимого. И наоборот — обычные устройства не мешают широкополосным, так как их сигналы большой мощности «шумят» каждый только в своем узком канале и не могут целиком заглушить весь широкополосный сигнал.

Использование широкополосных технологий дает возможность использовать один и тот же участок радиоспектра дважды — обычными узкополосными устройствами и «поверх них» — широкополосными.

Технология[править | править вики-текст]

В каждый передаваемый информационный бит (логический 0 или 1) встраивается последовательность так называемых чипов. Если информационные биты — логические нули или единицы — при потенциальном кодировании информации можно представить в виде последовательности прямоугольных импульсов, то каждый отдельный чип — это тоже прямоугольный импульс, но его длительность в несколько раз меньше длительности информационного бита. Последовательность чипов представляет собой последовательность прямоугольных импульсов, то есть нулей и единиц, однако эти нули и единицы не являются информационными. Поскольку длительность одного чипа в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.

Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательности), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.

Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определённым требованиям автокорреляции. Под термином автокорреляции в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал возможно будет выделить на уровне шума. Для этого в приёмнике полученный сигнал умножается на ту же чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал становится опять узкополосным, поэтому его фильтруют в узкой полосе частот и любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приёмника (если не используется приёмник с алгоритмом Боцмана).

См. также[править | править вики-текст]