Сложение по модулю 2

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Сложение по модулю 2
Исключающее ИЛИ
Элемент Исключающее ИЛИ (100).png
Основная информация
Классы
T0
T1
M
L
S
 Да   Нет   Нет   Да   Нет 
ДНФ
КНФ
Полином Жегалкина
Таблица истинности
Рис. 1 График побитового исключающего «или»

Сложе́ние по мо́дулю 2 (логи́ческая неравнозна́чность, исключа́ющее «ИЛИ», строгая дизъюнкция, XOR, поразрядное дополнение, побитовый комплемент, жегалкинское сложение) — булева функция, а также логическая и битовая операция. В случае двух переменных результат выполнения операции является истинным тогда и только тогда, когда один из аргументов является истинным, а второй ложным. Для функции трёх и более переменных результат выполнения операции будет истинным только тогда, когда количество аргументов равных 1, составляющих текущий набор — нечетное. Такая операция естественным образом возникает в кольце вычетов по модулю 2, откуда и происходит название операции.

Сложение по модулю 2 следует отличать от простого сложения, которое соответствует обыкновенному неисключающему «или» (логической дизъюнкции).

В теории множеств сложению по модулю 2 соответствует операция симметричной разности двух множеств.

в префиксной записи
.

Обозначения[править | править вики-текст]

Запись может быть префиксной («польская запись») — знак операции ставится перед операндами, инфиксной — знак операции ста­вит­ся между операндами и постфиксной — знак операции ставится после операндов. При числе операндов более 2-х префиксная и постфиксная записи экономичнее инфиксной записи. Чаще всего встре­ча­ют­ся сле­ду­ю­щие ва­ри­анты за­пи­си:
^ a ≠ b,

В таблице символов Юникод есть символ для сложения по модулю 2 (CIRCLED PLUS) — U+2295 ().

Свойства[править | править вики-текст]

Булева алгебра[править | править вики-текст]

В булевой алгебре сложение по модулю 2 — это функция двух, трёх и более переменных (они же — операнды операции, они же — аргументы функции). Переменные могут принимать значения из множества . Результат также принадлежит множеству . Вычисление результата производится по простому правилу, либо по таблице истинности. Вместо значений может использоваться любая другая пара подходящих символов, например или или «ложь», «истина», но при этом необходимо доопределять старшинство, например, .

Таблицы истинности:

Правило: результат равен , если оба операнда равны; во всех остальных случаях результат равен .
X Y Z ⊕(X,Y,Z)
0 0 0 0
1 0 0 1
0 1 0 1
1 1 0 0
0 0 1 1
1 0 1 0
0 1 1 0
1 1 1 1

Программирование[править | править вики-текст]

В языках C/C++, Java, C#, Ruby, PHP, JavaScript, Python и т. д. битовая операция поразрядного дополнения обозначается символом «^», в языках Паскаль, Delphi, Ada, Visual Basic — зарезервированным словом xor, в языке ассемблера — одноимённой логической командой. При этом сложение по модулю 2 выполняется для всех битов левого и правого операнда попарно. Например,

если

то

Выполнение операции исключающее «или» для значений логического типа (true, false) производится в разных языках программирования по-разному. Например, в Delphi используется встроенный оператор XOR (пример: условие1 xor условие2). В языке C, начиная со стандарта C99, оператор «^» над операндами логического типа возвращает результат применения логической операции XOR. В С++ оператор «^» для логического типа bool возвращает результат согласно описанным правилам, для остальных же типов производится его побитовое применение.

Связь с естественным языком[править | править вики-текст]

В естественном языке операция «сложение по модулю» эквивалентна двум выражениям:

  1. «результат истинен (равен 1), если A не равно B (A≠B)»;
  2. «если A не равно B (A≠B), то истина (1)».

Часто указывают на сходство между сложением по модулю 2 и конструкцией «либо … либо …» в естественном языке. Составное утверждение «либо A, либо B» считается истинным, когда истинно либо A, либо B, но не оба сразу; в противном случае составное утверждение ложно. Это в точности соответствует определению операции в булевой алгебре, если «истину» обозначать как , а «ложь» как .

Эту операцию нередко сравнивают с дизъюнкцией потому, что они очень похожи по свойствам, и обе имеют сходство с союзом «или» в повседневной речи. Сравните правила для этих операций:

  1. истинно, если истинно или , или оба сразу.
  2. истинно, если истинно или , но не оба сразу.

Операция исключает последний вариант («оба сразу») и по этой причине называется исключающим «ИЛИ». Операция включает последний вариант («оба сразу») и по этой причине иногда называется включающим «ИЛИ». Неоднозначность естественного языка заключается в том, что союз «или» может применяться в обоих случаях.

Квантовые вычисления[править | править вики-текст]

В квантовых компьютерах аналогом операции сложения по модулю 2 является вентиль CNOT.

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]