Реактивное сопротивление

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Emil Dalalyan (обсуждение | вклад) в 21:13, 28 августа 2023 (Увеличение размера мат. формулы). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

В электрических и электронных системах реактивное сопротивление (также реактанс) — это сопротивление элемента схемы, вызванное изменением тока или напряжения из-за индуктивности или ёмкости этого элемента. Понятие реактивного сопротивления аналогично электрическому сопротивлению, но оно несколько отличается в деталях.

В векторном анализе реактивное сопротивление используется для вычисления амплитудных и фазовых изменений синусоидального переменного тока, проходящего через элемент цепи. Обозначается символом . Идеальный резистор имеет нулевое реактивное сопротивление, тогда как идеальные катушки индуктивности и конденсаторы имеют, соответственно нулевое и бесконечно большое сопротивление — то есть, реагируют на ток только по наличию реактивного сопротивления. Величина реактивного сопротивления катушки индуктивности увеличивается пропорционально увеличению частоты, в то время как величина реактивного сопротивления конденсатора уменьшается пропорционально увеличению частоты.

Ёмкостное сопротивление

Конденсатор состоит из двух проводников, разделённых изолятором, также известным как диэлектрик.

Ёмкостное сопротивление — это сопротивление изменению напряжения на элементе. Ёмкостное сопротивление обратно пропорционально частоте сигнала (или угловой частоте ) и ёмкости [1].

В литературе существует два варианта определения реактивного сопротивления для конденсатора. Одним из них является использование единого понятия реактивного сопротивления в качестве мнимой части полного сопротивления, и, в этом случае, реактивное сопротивление конденсатора является отрицательным числом[1][2][3]:

.

Другой выбор состоит в том, чтобы определить ёмкостное сопротивление как положительное число[4][5][6],

.

В этом случае нужно помнить о добавлении отрицательного знака к импедансу то есть .

На низких частотах конденсатор эквивалентен разомкнутой цепи, если в диэлектрике ток не течёт.

Постоянное напряжение, приложенное к конденсатору, вызывает накопление положительного заряда на одной обкладке и накопление отрицательного заряда на другой обкладке; электрическое поле за счёт накопленного заряда является источником, который противодействует току. Когда потенциал, связанный с зарядом, точно уравновешивает приложенное напряжение, ток падает до нуля.

Приводимый в действие источником переменного тока (идеальный источник переменного тока), конденсатор будет накапливать только ограниченное количество заряда, прежде чем разность потенциалов изменит полярность и заряд вернётся к источнику. Чем выше частота, тем меньше накапливается заряд и тем меньше противодействие току.

Индуктивное сопротивление

Индуктивное реактивное сопротивление — это свойство, проявляемое индуктивностью, и индуктивное реактивное сопротивление существует благодаря тому, что электрический ток создаёт вокруг него магнитное поле. В контексте цепи переменного тока (хотя эта концепция применяется при любом изменении тока), это магнитное поле постоянно изменяется в результате изменения тока, который меняется во времени. Именно это изменение магнитного поля создаёт другой электрический ток в том же проводе (противо-ЭДС), в направлении, противоположном потоку тока, изначально ответственного за создание магнитного поля. Это явление известно как закон Ленца. Следовательно, индуктивное сопротивление — это противодействие изменению тока через элемент.

Для идеальной катушки индуктивности в цепи переменного тока сдерживающее влияние на изменение протекания тока приводит к задержке или сдвигу фаз переменного тока относительно переменного напряжения. В частности, идеальная индуктивность (без сопротивления) вызовет отставание тока от напряжения на четверть цикла или на 90°.

В электроэнергетических системах индуктивное реактивное сопротивление (и ёмкостное реактивное сопротивление, однако индуктивное реактивное сопротивление более распространено) может ограничивать пропускную способность линии электропередач переменного тока, поскольку мощность не передаётся полностью, когда напряжение и ток находятся в противофазе (подробно описано выше). То есть ток будет течь для противофазной системы, однако реальная мощность в определённые моменты времени не будет передаваться, потому что будут моменты, в течение которых мгновенный ток будет положительным, а мгновенное напряжение отрицательным, или наоборот, подразумевая отрицательную мощность передачи. Следовательно, реальная работа не выполняется, когда передача энергии является «отрицательной». Однако ток всё ещё течёт, даже когда система находится в противофазе, что приводит к нагреву линий электропередачи из-за протекания тока. Следовательно, линии электропередачи могут только сильно нагреваться (иначе они физически сильно прогибаются из-за тепла, расширяющего металлические линии электропередачи), поэтому операторы линий электропередачи имеют «потолок» в отношении величины тока, который может протекать через данную линию, и чрезмерное индуктивное сопротивление ограничивает мощность линии. Поставщики электроэнергии используют конденсаторы для сдвига фазы и минимизации потерь в зависимости от схемы использования.

Индуктивное реактивное сопротивление пропорционально частоте синусоидального сигнала и индуктивности , которая зависит от геометрических размеров и формы индуктивности.

Средний ток, протекающий через индуктивность последовательно с синусоидальным источником переменного напряжения среднеквадратичной амплитуды и частоты равен:

.

Поскольку прямоугольная волна (источник прямоугольного сигнала) имеет несколько амплитуд на синусоидальных гармониках (согласно теореме Фурье), средний ток, протекающий через индуктивность , включенную последовательно с прямоугольным источником переменного напряжения среднеквадратичной амплитуды и частоты , равен:

создавая иллюзию как если бы реактивное сопротивление прямоугольной волны на 19 % меньше , чем реактивное сопротивление синусоидального сигнала с той же частотой:

Любой проводник конечных размеров имеет индуктивность; индуктивность обычно делается из электромагнитных катушек, состоящих из множества витков провода. Согласно закону электромагнитной индукции Фарадея возникает противо-ЭДС (ток, противоположный напряжению) в проводнике из-за скорости изменения плотности магнитного потока через токовую петлю.

А для индуктивности состоящей из витков соответственно

Противо-ЭДС — это источник противодействия току. Постоянный ток имеет нулевую скорость изменения и рассматривает катушку индуктивности как обычный проводник (так как она сделано из материала с низким удельным сопротивлением). Переменный ток имеет усреднённую по времени скорость изменения, которая пропорциональна частоте, что вызывает увеличение индуктивного сопротивления с частотой.

Полное сопротивление

Как реактивное сопротивление так и обычное сопротивление компоненты импеданса .

где:

  •  — импеданс, измеряемый в омах;
  •  — сопротивление, измеряемый в омах. Это также действительная часть импеданса:
  •  — реактанс, измеряемый в омах. Это также мнимая часть импеданса:
  •  — мнимая единица, чтобы отличать от тока, который обозначается обычно .

Когда и конденсатор и индуктор соединены последовательно в цепь, их вклады к полному импедансу цепи противоположны. Ёмкостное сопротивление , и индуктивное сопротивление ,

вносят свой вклад в общее реактивное сопротивление в виде суммы

где:

  •  — индуктивное сопротивление, измеряемое в омах;
  •  — ёмкостное сопротивление, измеряемое в омах;
  •  — угловая частота, умноженная на частоту в Гц.

Отсюда:[3]

  • если , то реактанс имеет вид индуктивности;
  • если , импеданс чисто реальный;
  • если , то реактанс имеет вид ёмкости.

Замечание, в случае определения и как положительных величин, то формула меняет знак на отрицательный:[5]

,

но конечное значение одинаково.

Фазовые отношения

Фаза напряжения на чисто реактивном устройстве (конденсатор с бесконечным сопротивлением или индуктивности с нулевым сопротивлением) отстаёт от тока на радиан для ёмкостного сопротивления и опережает ток на радиан для индуктивного сопротивления. Без знания сопротивления и реактивного сопротивления невозможно определить соотношение между напряжением и током.

Для реактивной компоненты синусоидальное напряжение на компоненте находится в квадратуре (разность фаз ) с синусоидальным током через компонент. Компонент попеременно поглощает энергию из контура и затем возвращает энергию в контур, таким образом, чистое реактивное сопротивление не рассеивает мощность.

Примечания

  1. Shamieh C. и McComb G., Electronics for Dummies, John Wiley & Sons, 2011.
  2. Мид Р., Основы электроники, Cengage Learning, 2002.
  3. Young, Hugh D.; Roger A. Freedman; A. Lewis Ford (2004) [1949]. Сирс и Земанский университет физики (11-е изд.). Сан-Франциско : Эддисон Уэсли . ISBN Young, Hugh D.; Roger A. Freedman; A. Lewis Ford (2004) [1949]. Young, Hugh D.; Roger A. Freedman; A. Lewis Ford (2004) [1949].
  1. 1 2 Irwin, D. (2002). Basic Engineering Circuit Analysis, page 274. New York: John Wiley & Sons, Inc.
  2. Hayt, W.H., Kimmerly J.E. (2007). Engineering Circuit Analysis, 7th ed., McGraw-Hill, p. 388
  3. 1 2 Glisson, T.H. (2011). Introduction to Circuit Analysis and Design, Springer, p. 408
  4. Horowitz P., Hill W. (2015). The Art of Electronics, 3rd ed., p. 42
  5. 1 2 Hughes E., Hiley J., Brown K., Smith I.McK., (2012). Hughes Electrical and Electronic Technology, 11th edition, Pearson, pp. 237—241
  6. Robbins, A.H., Miller W. (2012). Circuit Analysis: Theory and Practice, 5th ed., Cengage Learning, pp. 554—558