Сферические функции

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями и при решении физических задач, обладающих сферической симметрией. Сферические функции имеют большое значение в теории дифференциальных уравнений в частных производных и теоретической физике, в частности в задачах расчёта электронных орбиталей в атоме, гравитационного поля геоида, магнитного поля планет и интенсивности реликтового излучения.

Определение[править | править вики-текст]

Вещественные сферические функции Ylm, l=0…4 (сверху вниз), m=0…4 (слева направо). Функции отрицательного порядка Yl-m повёрнуты вокруг оси Z на 90/m градусов относительно функций положительного порядка.

Сферические функции являются собственными функциями оператора Лапласа в сферической системе координат (обозначение ). Они образуют ортонормированную систему в пространстве функций на двумерной сфере:

,

где * обозначает комплексное сопряжение,  — символ Кронекера.

Сферические функции имеют вид

,

где функции являются решениями уравнения

и имеют вид

Здесь  — присоединённые многочлены Лежандра, а  — факториал.

Литература[править | править вики-текст]


См. также[править | править вики-текст]

Приложения[править | править вики-текст]

Ссылки[править | править вики-текст]