Уравнения Гамильтона

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Уравне́ния Гамильто́на (также называемые каноническими уравнениями) в физике и математике — система дифференциальных уравнений:

где точкой над p и q обозначена производная по времени. Система состоит из 2N дифференциальных уравнений первого порядка (j = 1, 2, …, N) для динамической системы, описываемой N (обобщёнными) координатами, являющихся уравнениями движения (одной из форм таких уравнений, наравне с уравнениями Лагранжа, являющейся обобщением ньютоновских уравнений движения) системы, где  — так называемая функция Гамильтона, также иногда именуемая гамильтонианом,  — время[1],  — (обобщенные) координаты , и  — обобщенные импульсы , определяющие состояние системы (точку фазового пространства).

Уравнения Гамильтона широко используются в гамильтоновой механике и других областях теоретической физики и математики.

Ньютоновский физический смысл[править | править вики-текст]

Наиболее простая интерпретация этих уравнений заключается в следующем. Гамильтониан представляет в наиболее простых случаях энергию физической системы, которая есть сумма кинетической и потенциальной энергий, традиционно обозначаемых и соответственно:

В частном случае, если q = X — декартовы координаты каждой материальной точки системы, записанные подряд по три (физическое пространство будем подразумевать здесь обычным трёхмерным), то есть

то канонические уравнения Гамильтона совпадают, учитывая предыдущий абзац, с уравнениями движения Ньютона в виде:

где , причем каждое подпространство дает радиус-вектор соответствующей материальной точки:

а обобщенные импульсы — соответствующие компоненты трехмерных импульсов этой точки:

Фундаментальная интерпретация[править | править вики-текст]

Функция Гамильтона по сути представляет собой локальный закон дисперсии, выражающий квантовую частоту (частоту колебаний волновой функции) через волновой вектор для каждой точки пространства[2]:

В классическом приближении (при больших[3] частотах и модуле волнового вектора и сравнительно медленной зависимости от ) этот закон достаточно очевидно описывает движение волнового пакета через канонические уравнения Гамильтона, одни из которых () интерпретируются как формула групповой скорости, полученная из закона дисперсии, а другие () вполне естественно — как изменение, в частности поворот, волнового вектора при распространении волны в неоднородной среде определенного типа.

Вывод уравнений Гамильтона[править | править вики-текст]

Вывод из принципа стационарного действия[править | править вики-текст]

Из принципа наименьшего (стационарного) действия уравнения гамильтона непосредственно получаются варьированием действия

,

независимо по и по .

Вывод из лагранжевой механики[править | править вики-текст]

Мы можем вывести уравнения Гамильтона используя информацию об изменении лагранжиана при изменении времени, координат и импульсов частиц.

обобщённые импульсы определяются как , и уравнения Лагранжа гласят:

где  — непотенциальная обобщённая сила. Последнее выражение преобразуется к виду и результат подставляется в вариацию лагранжиана

Можно записать:

и преобразуется к форме:

Множитель в левой части просто гамильтониан, который был определён раньше. Таким образом:

где второе равенство выполняется в силу определения частной производной.

Обобщение посредством скобок Пуассона[править | править вики-текст]

Уравнения могут быть записаны в более общем виде, если использовать алгебру Пуассона над образующими и . В этом случае, более общая форма уравнений Гамильтона гласит

,

где , называемая классической наблюдаемой, — это некоторая функция переменных , и , и  — гамильтониан системы. Со скобками Пуассона можно работать без обращения к дифференциальным уравнениям, поскольку скобки Пуассона полностью аналогичны скобкам Ли в алгебре Пуассона.

Этот алгебраический подход позволяет использовать распределение вероятностей для и , он также позволяет найти сохраняющиеся величины (интегралы движения).

Уравнения Гамильтона являются одними из основных уравнений классической механики. В квантовой механике аналогом приведенного уравнения Гамильтона является уравнение Гейзенберга.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. От времени функция Гамильтона, вообще говоря, может зависеть явно, хотя во многих фундаментальных случаях такой зависимости как раз нет.
  2. Поскольку энергия и импульс и есть частота и волновой вектор, отличаясь от них лишь универсальным постоянным множителем, который может быть выбран и единичным в подходящей системе единиц.
  3. Поскольку в связь энергии и частоты, импульса и волнового вектора в обычных системах единиц входит константа Планка, которая в этих обычных системах единиц очень мала, то обычным для классической механики энергиям и импульсам соответствуют очень большие (в соизмерении с обычными для классической механики пространственными и временными масштабами) частоты и волновые векторы.

Литература[править | править вики-текст]