Циркулянтный граф

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Граф Пейли 13-го порядка как пример циркулянтного графа.
Корона с шестью, восемью и десятью вершинами.

В теории графов циркулянтным графом называется неориентированный граф, имеющий циклическую группу симметрий, которая включает симметрию, переводящую любую вершину в любую другую вершину.

Эквивалентные определения[править | править вики-текст]

Циркулянтные графы могут быть определены несколькими эквивалентными способами[1]:

  • Автоморфизм группы графа содержит циклическую подгруппу, которая действует транзитивно на вершины графа.
  • Граф имеет матрицу смежности, являющуюся циркулянтной матрицей[en].
  • вершин графа можно пронумеровать числами от 0 до n − 1 таким образом, что если две вершины с номерами и смежны, то любые две вершины с номерами и (zx + y) mod n тоже смежны.
  • Граф можно нарисовать (с возможными пересечениями рёбер) так, что его вершины лежат в углах правильного многоугольника и любой поворот многоугольника в себя является симметрией рисунка (получаем тот же рисунок).

Примеры[править | править вики-текст]

Любой цикл является циркулянтным графом, как и любая корона.

Графы Пейли порядка (где  — простое число, сравнимое с 1 по модулю 4) — это графы, в которых вершины являются числами от 0 до n − 1 и две вершины смежны, если разность соответствующих чисел является квадратичным вычетом по модулю . Вследствие того, что присутствие или отсутствие ребра зависит только от разности номеров вершин по модулю , любой граф Пейли является циркулянтным графом.

Любая лестница Мёбиуса является циркулянтным графом, как и любой полный граф. Полный двудольный граф является циркулянтным, если обе его части имеют одинаковое число вершин.

Если два числа и взаимно просты, то m × n ладейный граф (граф, имеющий вершину в каждой клетке шахматной доски m × n и рёбра между любыми двумя клетками, если ладья может перейти с одной клетки на другую за один ход) является циркулянтным графом. Это является следствием того, что его симметрии содержат в качестве подгруппы циклическую группу {{{1}}}. Как обобщение этого случая, прямое произведение графов между любыми циркулянтными графами с и вершинами даёт в результате циркулянтный граф[1].

Многие из известных нижних границ чисел Рамсея появляются из примеров циркулянтных графов, имеющих маленькие максимальные клики и маленькие максимальные независимые множества[2].

Конкретный пример[править | править вики-текст]

Циркулянтный граф с прыжками определяется как граф с узлами, пронумерованными числами и каждый узел смежен с 2k узлами по модулю .

  • Граф связан тогда и только тогда, когда НОД.
  • Если фиксировнные целые, то число остовных деревьев , где удовлетворяет рекуррентному соотношению порядка .
    • В частности, , где  — n-ое число Фибоначчи.

Самодополнительные циркулянты[править | править вики-текст]

Самодополнительный граф — это граф, в котором удаление существующих рёбер и добавление отсутствующих даёт граф, изоморфный исходному.

Например, циклический граф с пятью вершинами самодополнителен и является также циркулянтным. В более общем виде, любой граф Пейли является самодополнительным циркулянтным графом[3]. Хорст Сакс[en] показал, что если число обладает свойством, что любой простой делитель сравним с 1 по модулю 4, то существует самодополнительный циркулянтный граф с вершинами. Он высказал гипотезу, что это условие необходимо, то есть при других значениях самодополнительные циркулянтные графы не существуют[1][3]. Гипотеза доказана 40 лет позже Вилфредом (Vilfred)[1].

Гипотеза Адамса[править | править вики-текст]

Определим циркулянтную нумерацию циркулянтного графа как маркировку вершин графа числами от 0 до n − 1 таким образом, что если две вершины и смежны, то любые две вершины с номерами и (zx + y) mod n тоже смежны. Эквивалентно, циркулянтная нумерация — это нумерация вершин при которой матрица смежности графа является циркулянтной матрицей.

Пусть  — целое, взаимно простое c , и пусть  — любое целое. Тогда линейная функция ax + b преобразует циркулянтную нумерацию в другую циркулянтную нумерацию. Андраш Адам (András Ádám) высказал гипотезу, что линейное отображение — единственный способ перенумерации вершин графа, сохраняющее свойство циркулянтности. То есть, если и  — два изоморфных циркулянтных графа с различными нумерациями, то существует линейное преобразование, переводящее нумерацию для в нумерацию для . Однако, как выяснилось, гипотеза Адама не верна. Контрпримером служат графы и с 16-ю вершинами в каждом; вершина в соединена с шестью соседями x ± 1, x ± 2, и x ± 7 (по модулю 16), в то время как в шесть соседей — это x ± 2, x ± 3, и x ± 5 (по модулю 16). Эти два графа изоморфны, но их изоморфизм нельзя получить посредством линейного преобразования.[1]

Примечания[править | править вики-текст]

  1. 1 2 3 4 5 V. Vilfred Graph Theory and its Applications (Anna University, Chennai, March 14–16, 2001) / editors: R. Balakrishnan, G. Sethuraman, Robin J. Wilson. — Alpha Science, 2004. — С. 34—36.
  2. Small Ramsey Numbers, Stanisław P. Radziszowski, Electronic J. Combinatorics, dynamic survey updated 2009.
  3. 1 2 Horst Sachs Über selbstkomplementäre Graphen // Publicationes Mathematicae Debrecen. — 1962. — Т. 9. — С. 270—288.

Ссылки[править | править вики-текст]