Квадратичный вычет

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Целое число называется квадратичным вычетом по модулю , если разрешимо сравнение[1]:

Если указанное сравнение не разрешимо, то число называется квадратичным невычетом по модулю . Решение приведенного выше сравнения означает извлечение квадратного корня в кольце классов вычетов.

Понятие квадратичного вычета широко применяется в теории чисел, оно также нашло практические применения в акустике[2], криптографии, теории графов (см. Граф Пейли) и в других областях деятельности.

Понятие квадратичного вычета может также рассматриваться для произвольного кольца или поля. Например, квадратичные вычеты в конечных полях.

Различия в терминологии[править | править код]

Математическая энциклопедия и ряд других источников определяют квадратичный вычет как число , для которого существует решение сравнения . В других источниках (например, Г. Хассе. Лекции по теории чисел, 1953) указано дополнительное требование, что число взаимно просто с . Часть источников вообще рассматривает только случай нечётного простого модуля[3] [4]. В обоих последних случаях ноль исключается из рассмотрения.

Примеры[править | править код]

Числа и являются квадратичными вычетами по любому модулю, так как сравнения и всегда имеют решения и соответственно.

Следствие: поскольку для модуля существуют только два класса вычетов и любое число по модулю 2 является квадратичным вычетом.

По модулю 3 существуют три класса вычетов: Их квадраты попадают в классы вычетов соответственно. Отсюда видно, что числа из классов и являются квадратичными вычетами, а числа из класса (например, ) — квадратичные невычеты по модулю 3.

Свойства[править | править код]

  • Критерий Эйлера: Пусть простое. Число a, взаимно простое с , является квадратичным вычетом по модулю тогда и только тогда, когда[1]:
и является квадратичным невычетом по модулю p тогда и только тогда, когда

Количество[править | править код]

По простому модулю[править | править код]

Среди ненулевых чисел , для простого модуля существует ровно квадратичных вычетов и невычетов.

Таким образом, ненулевые квадратичные вычеты образуют подгруппу индекса 2 в мультипликативной группе кольца .

По произвольному модулю[править | править код]

Вальтер Стангл в 1996 году представил формулу, позволяющую вычислить количество квадратичных вычетов по произвольному модулю .[5]

Пусть  — каноническое разложение числа . Тогда для количества квадратичных вычетов по модулю верна формула

Если , то первый множитель не учитывается.

Распределение[править | править код]

Количество в интервале[править | править код]

Пусть  — простое, . Обозначим через количество квадратичных вычетов по модулю среди чисел .

И. М. Виноградовым было доказано, что , где .

Из этого следует, что в произвольных интервалах достаточно большой длины (такой, что ) будет иметь место асимптотическое равенство , то есть квадратичных вычетов и невычетов асимптотически будет поровну.

Наименьший квадратичный невычет по данному модулю[править | править код]

Обозначим через минимальный положительный квадратичный невычет по модулю .

Верхние оценки[править | править код]

Пусть  — простое число.

Из неравенства (см. раздел «количество в интервале»), напрямую следует, что , то есть .

В результате более глубоких исследований Виноградов доказал, что .

Существует выдвинутая Виноградовым гипотеза о том, что .

Если гипотеза Римана верна, то .

Нижние оценки[править | править код]

Для наименьшего квадратичного невычета по простому модулю известна также условная оценка и безусловная оценка .

См. также[править | править код]

Примечания[править | править код]

  1. 1 2 Математическая энциклопедия, 1979, с. 785—786.
  2. Walker, R The design and application of modular acoustic diffusing elements. BBC Research Department. Проверено 25 октября 2016.
  3. Виноградов, 1952, Глава 5.
  4. MathWorld: Quadratic Residue.
  5. Stangl, Walter D. (October 1996), "Counting Squares in ℤn", Mathematics Magazine Т. 69 (4): 285–289, doi:10.2307/2690536, <http://www.maa.org/sites/default/files/Walter_D22068._Stangl.pdf> 

Литература[править | править код]

  • Виноградов И. М. Основы теории чисел. — М.-Л.: ГИТТЛ, 1952. — 180 с.
  • Квадратичный вычет // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1979. — Т. 2.
  • Нестеренко Ю. В. Теория чисел. — М.: Издательский центр «Академия», 2008. — С. 132—133. — 272 с. — ISBN 9785769546464.