Рациональная функция: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
м Дoбaвлeнa Категория:Дроби с помощью HotCat
м →‎Правильные дроби: оформление
Строка 22: Строка 22:
Любую неправильную рациональную дробь можно преобразовать в сумму некоторого многочлена и правильной рациональной дроби
Любую неправильную рациональную дробь можно преобразовать в сумму некоторого многочлена и правильной рациональной дроби


<math>\frac{P_n(x)}{Q_m(x)} = P^'_{n-m}(x) + \frac{P^{''}_{m-1}(x)}{Q_m(x)}</math>
<math>\frac{P_n(x)}{Q_m(x)} = P'_{n-m}(x) + \frac{P^{''}_{m-1}(x)}{Q_m(x)}</math>


Любую рациональную дробь многочленов с вещественными коэффициентами можно представить как сумму рациональных дробей, знаменателями которых являются выражения <math>(x-a)^k</math> (a — вещественный корень Q(x)) либо <math>(x^2+px+q)^k</math> (где <math>x^2+px+q</math> не имеет действительных корней), причём степени k не больше кратности соответствующих корней в многочлене Q(x). На основании этого утверждения основана теорема об интегрируемости рациональной дроби. Согласно ей, любая рациональная дробь может быть интегрирована в элементарных функциях, что делает класс рациональных дробей весьма важным в математическом анализе.
Любую рациональную дробь многочленов с вещественными коэффициентами можно представить как сумму рациональных дробей, знаменателями которых являются выражения <math>(x-a)^k</math> (<math>a</math> — вещественный корень <math>Q(x)</math>) либо <math>(x^2+px+q)^k</math> (где <math>x^2+px+q</math> не имеет действительных корней), причём степени <math>k</math> не больше кратности соответствующих корней в многочлене <math>Q(x)</math>. На основании этого утверждения основана теорема об интегрируемости рациональной дроби. Согласно ей, любая рациональная дробь может быть интегрирована в элементарных функциях, что делает класс рациональных дробей весьма важным в математическом анализе.


C этим связан [[Метод Остроградского|метод выделения рациональной части в первообразной от рациональной дроби]], который был предложен в 1844 году [[Остроградский, Михаил Васильевич|М. В. Остроградским]].
C этим связан [[Метод Остроградского|метод выделения рациональной части в первообразной от рациональной дроби]], который был предложен в 1844 году [[Остроградский, Михаил Васильевич|М. В. Остроградским]].

Версия от 17:44, 10 июля 2014

Рациональная функция — это дробь, числителем и знаменателем которой являются многочлены. Она имеет вид

где  ,   — многочлены от любого числа переменных.

Частным случаем являются рациональные функции одного переменного:

, где P(x) и Q(x) — многочлены.


Другим частным случаем является отношение двух линейных функций — дробно-линейная функция.

Свойства

Правильные дроби

Различают правильные и неправильные рациональные дроби, по аналогии с обычными числовыми дробями. Рациональная дробь называется правильной, если порядок знаменателя больше порядка числителя, и неправильной, если это не так.

Любую неправильную рациональную дробь можно преобразовать в сумму некоторого многочлена и правильной рациональной дроби

Любую рациональную дробь многочленов с вещественными коэффициентами можно представить как сумму рациональных дробей, знаменателями которых являются выражения ( — вещественный корень ) либо (где не имеет действительных корней), причём степени не больше кратности соответствующих корней в многочлене . На основании этого утверждения основана теорема об интегрируемости рациональной дроби. Согласно ей, любая рациональная дробь может быть интегрирована в элементарных функциях, что делает класс рациональных дробей весьма важным в математическом анализе.

C этим связан метод выделения рациональной части в первообразной от рациональной дроби, который был предложен в 1844 году М. В. Остроградским.

См. также