Биогеронтология: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Добавлен подраздел "Теория сшивок"
Добавлен раздел "Генетика"
Строка 44: Строка 44:


== Генетика ==
== Генетика ==
Генетические теории старения предполагают, что старение запрограммировано в генах. В соответсвии с этими теориями, гены диктуют продолжительность жизни клетки. Регулируемая гибель клетки ([[апоптоз]]) определяется "клеточными часами" через генетическую информацию внутри ядра клетки. Учёные уже знают некоторые гены, включающие механизм апоптоза в клетках, но гибель клетки не то же самое, что смерть или старение всего организма. Увеличение количества гибели клеток коррелирует с возрастом, но корреляция не означает причину. Стоит отметить, что внешние факторы и генетические мутации могут влиять на экспрессию генов и ускорять старение. В последнее время много внимания уделяется [[эпигенетика|эпигенетике]], которая является важным механизмом регуляции экспрессии генов. [[Эпигенетические часы]], которые относительно объективно измеряют биологический возраст клеток, являются полезным инструментом для тестирования различным подходов справиться со старением.<ref>{{Cite journal|author=Horvath S |title=DNA methylation age of human tissues and cell types|journal=Genome Biology |volume=14 |issue=10 |pages= R115|year=2013 |doi=10.1186/gb-2013-14-10-r115|pmid=24138928 |pmc=4015143}}</ref>


== Общая разбалансировка ==
== Общая разбалансировка ==


<!--
{{редактирую раздел|[[:участник:Lady3mlnm|Lady3mlnm]]|subst:L}}
{{редактирую раздел|[[:участник:Lady3mlnm|Lady3mlnm]]|subst:L}}
-->


== Примечания ==
== Примечания ==

Версия от 07:04, 18 апреля 2021

Рука старого человека хорошо демонстрирует внешние признаки старческого состояния организма
Сморщенное лицо с сухой кожей - стандартный внешний признак старого человека

Биогеронтология — раздел геронтологии, рассматривающий биологические процессы старения организма, его эволюционное происхождение, и потенциальные пути изменения этого процесса. Этот раздел включает в себя междисциплинарные исследования по причинам биологического старения, проявлениям и механизмам.[1] Биогеронтолог Леонард Хейфлик заявил, что натуральная средняя продолжительность жизни для человека составляет 92 года, и если мы не изобретём новых подходов в лечении старения, то упрёмся в этот потолок. [2] С другой стороны, Джеймс Ваупель[англ.] предсказывает что в индустриальных странах дети, родившиеся после полсе 2000 года, будут в среднем доживать до 100 лет. Многие опрошенные биогеронтологи предсказывают для детей, рождённых в 2100 году среднюю продолжительность жизни более трёх веков.[3] И некоторые говорят о возможности естественно неограниченной продолжительности жизни уже для ныне живущих людей. К примеру, Обри ди Грей в 2008 году оценил ориентировочные сроки, что в случае должного финансирования и вовлечении специалистов уже через 25–30 лет есть 50%-ный шанс создать технологию, спасающую людей от умирания от старости, все зависимости от возраста, в котором они к этому моменту будут.[4] Его идея заключается в том, чтобы чинить в телах то, что можно починить с помощью уже существующих технологий, позволяя дожить до времени, когда прогресс технологий позволит вылечить более глубокие повреждения. Эта концепция в переводе на русский язык получила название "скорость убегания от старости".

Биомедицинская геронтология, также известная как экспериментальная геронтология и "продление жизни", является одной из дисциплин биогеронтологии и стремится на практике замедлить, остановить и даже повернуть вспять возрастные процессы в организмах, включая организмы людей. Большинство активистов продления жизни верят, что человеческая жизнь может быть увеличена многократно для уже живущих людей.

Биогеронтологи расходятся во мнении, в какой степени нужно заниматься возрастными процессами. Некоторые считают, что следует лишь ограничиться смягчением протекания болезней пожилого возраста. В этом направлении недавно возникло новое поле деятельности, получившее название геронаука (geroscience) – "здоровое долголетие".[5] Оно направлено на изучение связи старости и возрастно-зависимых заболеваний. Главное целью является увеличение продолжительности здоровой жизни (healthspan), чтобы старость проходила в хорошем здоровье и с высоким качеством жизни.[6][7][8] Общая продолжительность жизни при этом увеличивается как следствие, но не это является главной целью. Некоторые говорят, что значительно увеличить продолжительность жизни невозможно или не нужно это делать по некоторым моральным соображениям. Другие биогеронтологи, напротив, считают, что старость сама по себе является болезнью и следует воздействовать на неё напрямую, а не на вызываемые ею последствия.[9][10][11] Их точка зрения, что если не будет старости как таковой, то и вероятность развития у человека старческо-зависимой болезней минимальна, и те легко излечимы. Они не согласны с тем, что неограниченная определённым возрастом продолжительность жизни связана с моральными проблемами.

В контрасте с биогеронтологией находится другое направление геронтологии – гериатрия. Если биогеронтология стремится предотвращать старческие болезни, оказывая воздействие на ход старение, то гериатрия занимается лечением уже существующих болезней.

Есть множество теорий старения: на одном конце спектра мнения о том, что старость запрограммирована, на другом конце теории сводящиемся к тому, что старческое состояние есть следствие накопления ошибок на разных уровнях организации тела.[12][13] Многие придерживаются срединного мнения о совместном действии программного и стохастического факторов, усиливающих друг друга. Но все зависимости от теории о механизме, все сходятся в том, что по мере старения, функциональные возможности организма уменьшаются.[14]

Стохастические теории

Стохастические теории старения представляют собой точку зрения, что старение обусловлено мелкими поломками в теле, происходящими с течением времени, которые организм не в состоянии починить и/или скомпенсировать. Эти мелкие поломки с годами постепенно накапливаются, уменьшая функциональные возможности организма. Впервые концепцию накапливаемых в организме повреждений выдвинул зоолог Август Вейсман в теории изнашивания в 1882 году.[15][16]

Теория изнашивания

Теории изнашивиная (англ. wear and tear theories) начали предлагаться ещё в 19-ом веке.[16] Они строятся вокруг того, что с течением времени структурные единицы тела, такие как клетки и органы, изнашиваются от постоянного использования. Эти изнашивания происходят вследствие внутренних и внешних факторов и в конечном счёте приводят к накоплению повреждений, которые превосходят способности организма к ремонту. Постепенно наступает истощение механического и химического запаса прочности. Некоторые из повреждающих факторов являются химикатами, содержащимися в воздухе, еде, дыме. Другие факторы - вирусы, травмы, свободные радикалы, сшивки, повышенная температура тела.[14]

Накопления

Накопительные теории (англ. accumulation theories) предполагают, что снижение функционального состояния тела проистекает от накопления мусорных элементов, происходящих от внешних факторов и образующихся в самом организме в ходе метаболических реакций.[14]

Теория накопления мутаций

Теория накопления мутаций (англ. mutations accumulation theory) — эволюционно-генетическая теория возникновения старения, предложена Питером Медаваром в 1952 году[15][17]. Эта теория рассматривает старение как побочный продукт естественного отбора. В природе вероятность размножения особи зависит от её возраста, достигая пика у молодых взрослых организмов сразу после наступления половой зрелости, после чего постепенно спадает, поскольку увеличивается вероятность, что особь до этого возраста не доживёт (хищники, болезни, несчастные случаи, накопление внутренних проблем в организме). Если особь от рождения имеет вредную мутацию, проявляющуюся в молодом возрасте, то с повышенной вероятностью такая особь вскоре погибнет и мутация следующему поколению не передастся. С другой стороны, если мутация имеет отложенное действие, то имеется высокая вероятность её передачи следующему поколению. Таким образом в популяции с тысячилетиями накапливались мутации с отложенными эффектами, формируя то, что мы сейчас называем процессом старения. Однако это только гипотеза, не нашедшая подтверждения на примере конкретных генов, – вопрос нуждается в дальнейшем изучении.

Свободнорадикальная теория старения

Свободные радикалы являются частями молекул, имеющими высокую способность вступать в случайные неконтролируемые химические реакции. Они образуются как побочные продукты в ходе различных внутриклеточных реакций, порой под воздействием внешних факторов. Возникнув, они вступают в случайные неконтролируемые реакции с находящимися поблизости клеточными структурами, серьёзно и часто необратимо их повреждая. Свободнорадикальная теория старения предполагает, что такие повреждения постепенно накапливаются, ухудшая функционирование клетки и предопределяя старение.[18] Идея, что свободные радикалы являются разрушительными внутриклеточными факторами, была предложена Ребекой Гершман[англ.] и её коллегами в 1945 году,[19] и стала широкоизвестной в 1956, когда Денхам Харман выдвинул свободнорадикальную теорию старения и продемонстрировал, что свободные радикалы усиливают деградацию биологической системы.[20] Самой известной разновидностью свободных радикалов являются активные формы кислорода (АФК, ROS), и особенно сильно от них страдают митохондрии, где они преимущественно и образуются в процессе клеточного дыхания. Количество свободных радикалов в клетке может быть уменьшено с помощью антиоксидантов. Однако сложность такого подхода в том, что некоторые свободные радикалы используются организмом в качестве сигнальных молекул, и чрезмерное общее подавление свободных радикалов приносит организму больше вреда, чем пользы. Некоторое время идея замедления старения с помощью антиоксидантов была очень популярна, но в последнее время повышенные дозы антиоксидантов стали считаться вредными. Сейчас некоторые учёные пытаются изобрести способы локального подавления свободных радикалов только в определённых частях клеток.[21][22] Эффективность такого подхода является неясной, исследования продолжаются.

Теория повреждения ДНК

Повреждения ДНК являются одной из основных причин болезней, связанных с возрастом. Стабильность генома определяется способностью эффективностью внутриклеточных ремонтных механизмов, изначальным запасом прочности и надёжностью системы внутриклеточного контроля. В 1958 году физик Джоаккино Фаилла[англ.] (Gioacchino Failla) выдвинул гипотезу, что старение вызвано накоплением повреждений в ДНК.[23] Эта гипотеза вскоре была развита физиком Лео Силардом.[24] Эта теория с годами претерпевала изменения по мере того, как открывались новые виды ДНК-повреждений и мутаций, и сейчас существует несколько её разновидностей, одни из которых основываются на накоплении мутаций, а другие считают мутации второстепенным фактором.[25]

Теория сшивок

Теория сшивок (англ. cross-linking theory) строится на том, что причиной старения является накопление в тканях конечных продуктов гликирования (КПГ, AGEs, устойчивое прикрепление частей молекул углеводов к молекулам белков и липидов), и других видов сшивок[англ.]. Такие сшивки ухудшают качество биологического функционирования исходных молекул, что имеет различные негативные последствия для организма, такие как затвердевание соединительной ткани, увеличение сердца[англ.] и тому подобное. Сшивки ДНК[англ.] приводят к ошибкам в процессе её репликации, одним из последствий этого является увеличение риска возникновения рака.[15]

Генетика

Генетические теории старения предполагают, что старение запрограммировано в генах. В соответсвии с этими теориями, гены диктуют продолжительность жизни клетки. Регулируемая гибель клетки (апоптоз) определяется "клеточными часами" через генетическую информацию внутри ядра клетки. Учёные уже знают некоторые гены, включающие механизм апоптоза в клетках, но гибель клетки не то же самое, что смерть или старение всего организма. Увеличение количества гибели клеток коррелирует с возрастом, но корреляция не означает причину. Стоит отметить, что внешние факторы и генетические мутации могут влиять на экспрессию генов и ускорять старение. В последнее время много внимания уделяется эпигенетике, которая является важным механизмом регуляции экспрессии генов. Эпигенетические часы, которые относительно объективно измеряют биологический возраст клеток, являются полезным инструментом для тестирования различным подходов справиться со старением.[26]

Общая разбалансировка

Примечания

  1. Александр Жаворонков. Мы можем быть или первым поколением, которое проживет значительно дольше предков, или последним, которое проживет сравнительно короткую жизнь. vechnayamolodost.ru (19 апреля 2013).
  2. Geoff Watts (June 2011). "Leonard Hayflick and the limits of aging". The Lancet. 377 (9783): 2075. doi:10.1016/S0140-6736(11)60908-2. PMID 21684371.
  3. Richel, Theo (December 2003). "Will human life expectancy quadruple in the next hundred years? Sixty gerontologists say public debate on life extension is necessary". Journal of Anti-Aging Medicine. 6 (4): 309—314. doi:10.1089/109454503323028902. PMID 15142432.
  4. Aubrey de Grey, Michael Rae. Отменить старение. — 1-ое. — St. Martin's Griffin, 14 октября 2008. — С. 15. — ISBN 9780312367077.
  5. Lithgow, Gordon J. (1 September 2013). "Origins of Geroscience". Public Policy & Aging Report. 4 (1): 10—11. doi:10.1093/ppar/23.4.10.
  6. Кэмерон Диас, Сндра Барк. Книга о долголетии (неопр.). — Москва: Синдбад, 2017. — С. 14. — ISBN 978-5-906837-26-4.
  7. Burch, John B.; et al. (2014-05-08). "Advances in Geroscience: Impact on Healthspan and Chronic Disease". The Journals of Gerontology: Series A. 69 (Suppl_1): S1—S3. doi:10.1093/gerona/glu041. PMID 24833579.
  8. Seals, Douglas R.; Justice, Jamie N.; LaRocca, Thomas J. (2015-01-29). "Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity". The Journal of Physiology. 594 (8): 2001–2024. doi:10.1113/jphysiol.2014.282665. PMID 25639909.
  9. Stambler, Ilia (2017-10-1). "Recognizing Degenerative Aging as a Treatable Medical Condition: Methodology and Policy". Aging and Disease. 8 (5): 583–589. doi:10.14336/AD.2017.0130. PMID 28966803. {{cite journal}}: Проверьте значение даты: |date= (справка)
  10. "Opening the door to treating ageing as a disease". The Lancet Diabetes & Endocrinology. 6 (8): 587. 2018-08-01. doi:10.1016/S2213-8587(18)30214-6. PMID 30053981.
  11. Khaltourina, Daria; Matveyev, Yuri; Alekseev, Aleksey; Cortese, Franco; Ioviţă, Anca (July 2020). "Aging Fits the Disease Criteria of the International Classification of Diseases". ScienceDirect. 189. doi:10.1016/j.mad.2020.111230. PMID 32251691.
  12. "The Hallmarks of Aging". Cell. 153 (6): 1194—1217. 2013-06-06. doi:10.1016/j.cell.2013.05.039. PMC 3836174. PMID 23746838. {{cite journal}}: Источник использует устаревший параметр |authors= (справка)
  13. Carlos López-Otín, Maria A. Blasco, Linda Partridge, Manuel Serrano, Guido Kroemer. Ключевые признаки старения. Федеральное государственное бюджетное учреждение «Всероссийский центр экстренной и радиационной медицины имени А.М. Никифорова» МЧС России (6 июня 2013).
  14. 1 2 3 Taylor, Albert W. Physiology of Exercise and Healthy Aging / Albert W. Taylor, Michel J. Johnson. — Human Kinetics, 2008. — ISBN 978-0-7360-5838-4.
  15. 1 2 3 Lipsky, Martin S.; King, Mitch (2015). "Biological theories of aging". Disease-a-Month. 61 (11): 460—466. doi:10.1016/j.disamonth.2015.09.005. PMID 26490576.
  16. 1 2 Jessica Kelly. Wear-and-Tear Theory. Lumen Learning.
  17. Medawar P.B. An Unresolved Problem in Biology / Lewis. — London, 1952.
  18. Boniewska-Bernacka, Ewa (2016). "Selected Theories of Aging" (PDF). Higher School's Pulse. 10: 36—39.
  19. Gerschman, Rebecca; Gilbert, DL, Nye, SW, Dwyer, P, and Fenn WO; Nye, Sylvanus W.; Dwyer, Peter; Fenn, Wallace O. (7 May 1954). "Oxygen poisoning and x-irradiation: a mechanism in common". Science. 119 (3097): 623—626. Bibcode:1954Sci...119..623G. doi:10.1126/science.119.3097.623. PMID 13156638.{{cite journal}}: Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка)
  20. Harman, D (November 1981). "The aging process". Proc. Natl. Acad. Sci. U.S.A. 78 (11): 7124—7128. Bibcode:1981PNAS...78.7124H. doi:10.1073/pnas.78.11.7124. PMC 349208. PMID 6947277.
  21. Митохондриально-направленные антиоксиданты против старения. Проект SkQ (11 декабря 2018).
  22. SKQ Project | Molecule. Mitotech. Дата обращения: 17 апреля 2021.
  23. Failla, G (30 September 1958). "The aging process and cancerogenesis". Annals of the New York Academy of Sciences. 71 (6): 1124—1140. Bibcode:1958NYASA..71.1124F. doi:10.1111/j.1749-6632.1958.tb46828.x. PMID 13583876.
  24. Szilard, Leo (January 1959). "On the nature of the aging process". Proc. Natl. Acad. Sci. U.S.A. 45 (1): 30—45. Bibcode:1959PNAS...45...30S. doi:10.1073/pnas.45.1.30. PMC 222509. PMID 16590351.
  25. Freitas, AA; de Magalhaes, JP (Jul-Oct 2011). "A review and appraisal of the DNA damage theory of aging". Mutat Res. 728 (1—2): 12—22. doi:10.1016/j.mrrev.2011.05.001. PMID 21600302.{{cite journal}}: Википедия:Обслуживание CS1 (формат даты) (ссылка)
  26. Horvath S (2013). "DNA methylation age of human tissues and cell types". Genome Biology. 14 (10): R115. doi:10.1186/gb-2013-14-10-r115. PMC 4015143. PMID 24138928.{{cite journal}}: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)