Дифференцирование тригонометрических функций

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Функция синуса и косинуса в единичном круге
Функция Производная

Дифференцирование тригонометрических функций — математический процесс нахождения производной тригонометрической функции или скорости её изменения по отношению к переменной. Например, производная функции синуса записывается как sin′(a) = cos(a), что означает, что скорость изменения sin(x) под определённым углом x = a задаётся косинусом этого угла.

Все производные круговых тригонометрических функций могут быть найдены из производных sin(x) и cos(x) с помощью правила частного[en], применяемого к таким функциям, как tan(x) = sin(x)/cos(x). Зная эти производные, можно производные от обратных тригонометрических функций найти с помощью неявного дифференцирования.

Все указанные функции непрерывны и дифференцируемы в своей области определения[1].

Доказательства производных тригонометрических функций[править | править код]

Предел sin(θ)/θ при стремлении θ к 0[править | править код]

Круг с центром O и радиусом r
(r = OK = OA)

На диаграмме справа показан круг с центром O и радиусом r = 1. Пусть два радиуса OA и OK образуют дугу в θ радиан. Поскольку мы рассматриваем предел, когда θ стремится к нулю, мы можем предположить, что θ — это небольшое положительное число, скажем, 0 < θ < ½ π в первом квадранте.

На схеме пусть R1 будет треугольником OAK, R2круговым сектором OAK и R3 — треугольником OAL. Тогда площадь треугольника OAK:

Площадь кругового сектора OAK — это , а площадь треугольника OAL определяется как

Поскольку каждый объект содержится в следующем, мы имеем:

Более того, поскольку sin θ > 0 в первом квадранте, мы можем разделить на ½ sin θ, получив:

На последнем этапе мы взяли обратно три положительных члена, изменив неравенство.

Мы пришли к выводу, что для 0 < θ < ½ π выражение sin(θ)/θ будет всегда меньше 1 и всегда больше cos(θ). Таким образом, чем ближе θ к 0, тем сильнее sin(θ)/θ становится "сжатым" между потолком на высоте 1 и полом на высоте cos θ, который стремится к 1; следовательно, sin(θ)/θ стремится к 1, когда θ стремится к 0 с положительной стороны:

Для случая, когда θ — это небольшое отрицательное число -½ π <θ <0, мы используем тот факт, что синус — это нечётная функция:

Предел (cos(θ)-1)/θ при стремлении θ к 0[править | править код]

Последний раздел позволяет нам относительно легко рассчитать этот новый предел. Это делается простым трюком. В этом расчёте знак θ неважен.

С использованием cos2θ – 1 = –sin2θ, факт, что предел произведения является произведением пределов, а предельный результат из предыдущего раздела, мы находим, что:

Предел tan(θ)/θ при стремлении θ к 0[править | править код]

Используя предел для функции синуса и то, что функция тангенс нечётна и предел произведения является произведением пределов, мы находим:

Производная функции синуса[править | править код]

Из определения производной[править | править код]

Мы рассчитываем производную функции синуса из определения предела:

Используя формулы сложения углов sin(α+β) = sin α cos β + sin β cos α, мы имеем:

Использование пределов для функций синуса и косинуса:

Из производной гиперболических функций[править | править код]

Если использовать гиперболические функции, то формально можно получить, что:

,

т.к.

Производная функции косинуса[править | править код]

Из определения производной[править | править код]

Мы снова вычисляем производную функции косинуса из определения предела:

Используя формулу сложения углов cos(α+β) = cos α cos β – sin α sin β, мы имеем:

Использование пределов для функций синуса и косинуса:

Из производной гиперболических функций[править | править код]

Если использовать гиперболические функции, то формально можно получить, что:

Из цепного правила[править | править код]

Чтобы вычислить производную функции косинуса из цепного правила, сначала обратите внимание на три следующих факта:

Первое и второе — это тригонометрические тождества, а третье доказано выше. Используя эти три факта, мы можем написать следующее:

Мы можем дифференцировать это, используя цепное правило. Положив , мы имеем:

.

Таким образом, мы доказали, что

.

Производная функции тангенса[править | править код]

Из определения производной[править | править код]

Чтобы вычислить производную функции тангенса tan θ, мы используем первые принципы. По определению:

Используя известную формулу угла tan(α+β) = (tan α + tan β) / (1 - tan α tan β), мы имеем:

Используя тот факт, что предел произведения является произведением пределов:

Используя предел для функции тангенса и тот факт, что tan δ стремится к 0, поскольку δ стремится к 0:

Сразу видим, что:

Из производной гиперболических функций[править | править код]

Из правила частного[править | править код]

Также можно вычислить производную функции тангенса, используя правило частного:

Числитель можно упростить до 1 с помощью пифагорового тождества, что даёт нам:

Следовательно,

Доказательства производных обратных тригонометрических функций[править | править код]

Следующие производные можно найти, установив переменную y равной обратной тригонометрической функции, от которой мы хотим взять производную. Используя неявное дифференцирование и затем решая для dy/dx, производная обратной функции будет найдена в терминах y. Чтобы преобразовать dy/dx обратно в термины x, мы можем нарисовать эталонный треугольник на единичной окружности, положив θ равным y. Используя теорему Пифагора и определение обычных тригонометрических функций, мы наконец можем выразить dy/dx через x.

Дифференцирование функции арксинуса[править | править код]

Пусть

где

Тогда

Взяв производную по с обеих сторон и решив для , имеем:

Подставляя сверху , имеем:

Подставляя сверху , имеем:

Из производной обратной гиперболической функции[править | править код]

Дифференцирование функции арккосинуса[править | править код]

Пусть

где

Тогда

Взяв производную по с обеих сторон и решив для , имеем:

Подставляя сверху , получаем:

Подставляя сверху , получаем:

В качестве альтернативы, как только производная от установлена, производная от сразу следует путём дифференцирования тождества так, что .

Из производной обратной гиперболической функции[править | править код]

Дифференцирование функции арктангенса[править | править код]

Пусть

где

Тогда

Взяв производную по с обеих сторон и решив для , имеем:

Левая сторона:

, используя пифагорово тождество

Правая сторона:

Следовательно,

Подставляя сверху , получаем:

Из производной обратной гиперболической функции[править | править код]

Дифференцирование функции арккотангенса[править | править код]

Пусть

где Тогда

Взяв производную по с обеих сторон и решив для , имеем:

Левая сторона:

, используя пифагорово тождество

Правая сторона:

Следовательно,

Подставляя , получаем:

Из производной обратной гиперболической функции[править | править код]

Дифференцирование функции арксеканса[править | править код]

Использование неявного дифференцирования[править | править код]

Пусть

Тогда

(Абсолютное значение в выражении необходимо, поскольку произведение секанса и тангенса в интервале y всегда неотрицательно, а радикал всегда неотрицателен по определению главного квадратного корня, поэтому оставшийся множитель также должен быть неотрицательным, что достигается за счёт использования абсолютного значения x.)

Использование цепного правила[править | править код]

В качестве альтернативы, производная арксеканса может быть получена из производной арккосинуса с использованием цепного правила.

Пусть

где

and

Тогда, применяя цепное правило к , имеем:

Дифференцирование функции арккосеканса[править | править код]

Использование неявного дифференцирования[править | править код]

Пусть

Тогда

(Абсолютное значение в выражении необходимо, поскольку произведение косеканса и котангенса в интервале y всегда неотрицательно, а радикал всегда неотрицателен по определению главного квадратного корня, поэтому оставшийся множитель также должен быть неотрицательным, что достигается за счёт использования абсолютного значения x.)

Использование цепного правила[править | править код]

В качестве альтернативы, производная арккосеканса может быть получена из производной арксинуса с использованием цепного правила.

Пусть

где

and

Тогда, применяя цепное правило к , имеем:

См. также[править | править код]

Примечания[править | править код]

  1. Производные тригонометрических функций. math24.ru. Math24. Дата обращения: 7 июля 2021. Архивировано 9 июля 2021 года.

Литература[править | править код]

  • Справочник по математическим функциям[en], Под редакцией Абрамовица и Стегуна, Национальное бюро стандартов, Серия по прикладной математике, 55 (1964)
  • Курант Р. Курс дифференциального и интегрального исчисления. — 4. — Москва: Наука, 1970. — Т. 1. — 672 с.