Компактный оператор

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В функциональном анализе компа́ктным (или вполне непрерывным) опера́тором называется линейный оператор A: X\to Y из банахова пространства X в банахово пространство Y такой, что всякое ограниченное подмножество в X отображается в предкомпактное множество пространства Y. Компактный оператор непременно ограничен, а значит, и непрерывен (этим оправдывается его второе название).

Свойства[править | править исходный текст]

  • Любой конечномерный оператор компактен. Вообще, класс компактных операторов является обобщением класса конечномерных операторов на бесконечномерные пространства.
  • Множество \mathcal{K}(X,Y) компактных операторов с естественными операциями является замкнутым подпространством в пространстве ограниченных операторов.
  • Композиция двух компактных операторов — компактный оператор.
  • Оператор является компактным тогда и только тогда, когда он переводит единичный шар пространства X в предкомпактное множество.
  • Тождественный оператор компактен тогда и только тогда, когда он конечномерен. (Это следует из теоремы Рисса о единичных шарах).
  • Если T — компактный оператор, действующий из X в X, то оператор id − T (компактное возмущение тождественного оператора) — фредгольмов оператор индекса 0.
  • Если T — компактный оператор, действующий из X в X, где Xгильбертово пространство, то он является пределом последовательности из конечномерных операторов (по операторной норме), то есть гильбертовы пространства обладают свойством аппроксимации. Произвольные банаховы пространства таким свойством могут и не обладать, см. пример Энфло.
  • Если T — компактный оператор между гильбертовыми пространствами, то имеет место теорема Шмидта.
  • Все интегральные операторы, действующие в пространстве L_2 на отрезке, компактны.
  • Оператор, сопряжённый к компактному, компактен.

Примеры[править | править исходный текст]

Возьмём произвольную функцию g \in C[0,1]. Тогда определённый следующим образом оператор T будет компактным:

(Tf)(x) = \int\limits_0^x f(t)g(t)\,dt

См. также[править | править исходный текст]