Магический квадрат

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Маги́ческий, или волше́бный квадра́т — это квадратная таблица n\times n, заполненная n^2 числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова. Если в квадрате равны суммы чисел только в строках и столбцах, то он называется полумагическим. Нормальным называется магический квадрат, заполненный натуральными числами от 1 до n^2. Магический квадрат называется ассоциативным или симметричным, если сумма любых двух чисел, расположенных симметрично относительно центра квадрата, равна n^2+1.

Нормальные магические квадраты существуют для всех порядков n\ge 1, за исключением n=2, хотя случай n=1 тривиален — квадрат состоит из одного числа. Минимальный нетривиальный случай показан ниже, он имеет порядок 3.

2 7 6 \rightarrow 15
9 5 1 \rightarrow 15
4 3 8 \rightarrow 15
\swarrow \downarrow \downarrow \downarrow \searrow
15 15 15 15 15

Сумма чисел в каждой строке, столбце и на диагоналях называется магической константой, M. Магическая константа нормального волшебного квадрата зависит только от n и определяется формулой

M(n) = \frac{n(n^2+1)}{2}


Первые значения магических констант приведены в следующей таблице (последовательность A006003 в OEIS):

Порядок n 3 4 5 6 7 8 9 10 11 12 13
M (n) 15 34 65 111 175 260 369 505 671 870 1105

Исторически значимые магические квадраты[править | править вики-текст]

Квадрат Ло Шу[править | править вики-текст]

Изображение Ло Шу в книге эпохи Мин
Lo Shu 3x3 magic square.svg

Ло Шу (кит. трад. 洛書, упр. 洛书, пиньинь: luò shū) Единственный нормальный магический квадрат 3×3. Был известен ещё в Древнем Китае, первое изображение на черепаховом панцире датируется 2200г. до н.э..

4 9 2
3 5 7
8 1 6

Квадрат, найденный в Кхаджурахо (Индия)[править | править вики-текст]

Самый ранний уникальный магический квадрат обнаружен в надписи XI века в индийском городе Кхаджурахо:

7 12 1 14
2 13 8 11
16 3 10 5
9 6 15 4

Это первый магический квадрат, относящийся к разновидности так называемых «дьявольских» квадратов.[1][2][3]

Магический квадрат Ян Хуэя (Китай)[править | править вики-текст]

В 13 в. математик Ян Хуэй занялся проблемой методов построения магических квадратов. Его исследования были потом продолжены другими китайскими математиками. Ян Хуэй рассматривал магические квадраты не только третьего, но и больших порядков. Некоторые из его квадратов были достаточно сложны, однако он всегда давал правила для их построения. Он сумел построить магический квадрат шестого порядка, причем последний оказался почти ассоциативным (в нем только две пары центрально противолежащих чисел не дают сумму 37)[4]:

27 29 2 4 13 36
9 11 20 22 31 18
32 25 7 3 21 23
14 16 34 30 12 5
28 6 15 17 26 19
1 24 33 35 8 10

Квадрат Альбрехта Дюрера[править | править вики-текст]

Фрагмент гравюры Дюрера «Меланхолия»

Магический квадрат 4×4, изображённый на гравюре Альбрехта Дюрера «Меланхолия I», считается самым ранним в европейском искусстве.[5] Два средних числа в нижнем ряду указывают дату создания гравюры (1514).

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Сумма чисел на любой горизонтали, вертикали и диагонали равна 34. Эта сумма также встречается во всех угловых квадратах 2×2, в центральном квадрате (10+11+6+7), в квадрате из угловых клеток (16+13+4+1), в квадратах, построенных «ходом коня» (2+8+9+15 и 3+5+12+14), в прямоугольниках, образованных парами средних клеток на противоположных сторонах (3+2+15+14 и 5+8+9+12). Большинство дополнительных симметрий связано с тем, что сумма любых двух центрально симметрично расположенных чисел равна 17.

Квадраты Генри Э. Дьюдени и Аллана У. Джонсона-мл.[править | править вики-текст]

Если в квадратную матрицу n × n заносится не строго натуральный ряд чисел, то данный магический квадрат — нетрадиционный. Ниже представлены два таких магических квадрата, заполненные простыми числами (хотя 1 в современной теории чисел не считается простым числом). Первый имеет порядок n=3 (квадрат Дьюдени); второй (размером 4x4) — квадрат Джонсона. Оба они были разработаны в начале двадцатого столетия[6]:

67 1 43
13 37 61
31 73 7
3 61 19 37
43 31 5 41
7 11 73 29
67 17 23 13

Есть еще несколько подобных примеров:

17 89 71
113 59 5
47 29 101
1 823 821 809 811 797 19 29 313 31 23 37
89 83 211 79 641 631 619 709 617 53 43 739
97 227 103 107 193 557 719 727 607 139 757 281
223 653 499 197 109 113 563 479 173 761 587 157
367 379 521 383 241 467 257 263 269 167 601 599
349 359 353 647 389 331 317 311 409 307 293 449
503 523 233 337 547 397 421 17 401 271 431 433
229 491 373 487 461 251 443 463 137 439 457 283
509 199 73 541 347 191 181 569 577 571 163 593
661 101 643 239 691 701 127 131 179 613 277 151
659 673 677 683 71 67 61 47 59 743 733 41
827 3 7 5 13 11 787 769 773 419 149 751

Последний квадрат, построенный в 1913 г. Дж. Н.Манси, примечателен тем, что он составлен из 143 последовательных простых чисел за исключением двух моментов: привлечена единица, которая не является простым числом, и не использовано единственное чётное простое число 2.

Квадраты с дополнительными свойствами[править | править вики-текст]

Дьявольский магический квадрат[править | править вики-текст]

Дьявольский квадрат или пандиагональный квадрат — магический квадрат, в котором также с магической константой совпадают суммы чисел по ломаным диагоналям (диагонали, которые образуются при сворачивании квадрата в тор) в обоих направлениях.

Существует 48 дьявольских квадратов 4×4 с точностью до поворотов и отражений. Если принять во внимание ещё и симметрию относительно торических параллельных переносов, то остаётся только 3 существенно различных квадрата:

1 8 13 12
14 11 2 7
4 5 16 9
15 10 3 6
1 12 7 14
8 13 2 11
10 3 16 5
15 6 9 4
1 8 11 14
12 13 2 7
6 3 16 9
15 10 5 4

Пандиагональные квадраты существуют для нечётного порядка n>3, для любого порядка двойной чётности n=4k (k=1,2,3…) и не существуют для порядка одинарной чётности n=4k+2 (k=1,2,3,\dots).

Пандиагональные квадраты четвёртого порядка обладают рядом дополнительных свойств, за которые их называют совершенными. Совершенных квадратов нечётного порядка не существует. Среди пандиагональных квадратов двойной чётности выше 4 имеются совершенные.[7]

Пандиагональных квадратов пятого порядка 3600. С учётом торических параллельных переносов имеется 144 различных пандиагональных квадратов. Один из них показан ниже.

1 15 24 8 17
9 18 2 11 25
12 21 10 19 3
20 4 13 22 6
23 7 16 5 14
Разломанные диагонали пандиагонального квадрата

Если пандиагональный квадрат еще и ассоциативный, то он носит название идеальный[8]. Пример идеального магического квадрата:

21 32 70 26 28 69 22 36 65
40 81 2 39 77 7 44 73 6
62 10 51 58 18 47 57 14 52
66 23 34 71 19 33 67 27 29
4 45 74 3 41 79 8 37 78
53 55 15 49 63 11 48 59 16
30 68 25 35 64 24 31 72 20
76 9 38 75 5 43 80 1 42
17 46 60 13 54 56 12 50 61

Известно, что не существует идеальных магических квадратов порядка n = 4k+2 и квадрата порядка n = 4. В то же время, существуют идеальные квадраты порядка n = 8.[9] Методом построения составных квадратов можно построить на базе данного квадрата восьмого порядка идеальные квадраты порядка n = 8k, k=5,7,9…и порядка n = 8^p, p=2,3,4…[10] В 2008 г. разработан комбинаторный метод построения идеальных квадратов порядка n = 4k, k = 2, 3, 4,…

Построение магических квадратов[править | править вики-текст]

Метод террас[править | править вики-текст]

Описан Ю. В. Чебраковым в «Теории магических матриц».

Для заданного нечетного n начертим квадратную таблицу размером nxn. Пристроим к этой таблице со всех четырех сторон террасы (пирамидки). В результате получим ступенчатую симметричную фигуру.

Y
4 5
3 4 10
2 3 9 15
1 2 8 14 20
0 1 7 13 19 25
-1 6 12 18 24
-2 11 17 23
-3 16 22
-4 21
.
X -4 -3 -2 -1 0 1 2 3 4

Начиная с левой вершины ступенчатой фигуры, заполним ее диагональные ряды последовательными натуральными числами от 1 до N^2.

После этого для получения классической матрицы N-го порядка числа, находящиеся в террасах, поставим на те места таблицы размером NxN, в которых они оказались бы, если перемещать их вместе с террасами до того момента, пока основания террас не примкнут к противоположной стороне таблицы.

Y
4
3
2 3 16 9 22 15
1 20 8 21 14 2
0 7 25 13 1 19
-1 24 12 5 18 6
-2 11 4 17 10 23
-3
-4
.
X -4 -3 -2 -1 0 1 2 3 4


3 16 9 22 15
20 8 21 14 2
7 25 13 1 19
24 12 5 18 6
11 4 17 10 23

Прочие способы[править | править вики-текст]

Правила построения магических квадратов делятся на три категории в зависимости от того, каков порядок квадрата: нечетен, равен удвоенному нечетному числу или равен учетверенному нечетному числу. Общий метод построения всех квадратов неизвестен, хотя широко применяются различные схемы.[11][12] Найти все магические квадраты порядка n удается только для n\le 4, поэтому представляют большой интерес частные процедуры построения магических квадратов при n>4. Проще всего конструкция для магического квадрата нечетного порядка. Нужно в клетку с координатами (i,j) поставить число

1+((i-j+(n-1)/2)\bmod n)n+((i+j+(n+1)/2)\bmod n).[источник не указан 1393 дня]

Ещё проще построение выполнить следующим образом. Берётся матрица n x n . Внутри её строится ступенчатый ромб. В нём ячейки слева вверх по диагоналям заполняются последовательным рядом нечётных чисел. Определяется значение центральной ячейки C. Тогда в углах магического квадрата значения будут такими: верхняя правая ячейка C-1 ; нижня левая ячейка C+1 ; нижняя правая ячейка C-n; верхняя левая ячейка C+n. Заполнение пустых ячеек в ступенчатых угловых треугольниках ведётся с соблюдением простых правил: 1)по строкам числа слева направо увеличиваются с шагом n + 1; 2) по столбцам сверху вниз числа увеличиваются с шагом n-1.

Также разработаны алгоритмы построения пандиагональных квадратов,[13][14] и идеальных магических квадратов 9x9.[15] [16] Эти результаты позволяют строить идеальные магические квадраты порядков n = 9 (2k + 1) для k=0,1,2,3,\dots.[8][17] Существуют также общие методы компоновки идеальных магических квадратов нечётного порядка n>3.[18] [19] Разработаны методы построения идеальных магических квадратов порядка n=8k, k=1,2,3…[20] и совершенных магических квадратов.[21] Пандиагональные и идеальные квадраты четно-нечётного порядка удаётся скомпоновать лишь в том случае, если они нетрадиционные.[22][23] [24] Тем не менее, можно находить почти пандиагональные квадраты [25] Найдена особая группа идеально-совершенных магических квадратов (традиционных и нетрадиционных)[26].

Примеры более сложных квадратов[править | править вики-текст]

Методически строго отработаны магические квадраты нечётного порядка и порядка двойной чётности.[27] Формализация квадратов порядка одинарной чётности намного труднее, что иллюстрируют следующие схемы:

18 24 5 6 12
22 3 9 15 16
1 7 13 19 25
10 11 17 23 4
14 20 21 2 8
64 2 3 61 60 6 7 57
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
8 58 59 5 4 62 63 1
100 99 93 7 5 6 4 8 92 91
11 89 88 84 16 15 17 83 82 20
30 22 78 77 75 26 74 73 29 21
61 39 33 67 66 65 64 38 32 40
60 52 48 44 56 55 47 43 49 51
50 42 53 54 46 45 57 58 59 41
31 62 63 37 36 35 34 68 69 70
71 72 28 27 25 76 24 23 79 80
81 19 18 14 85 86 87 13 12 90
10 9 3 94 95 96 97 98 2 1

Существуют несколько десятков других методов построения магических квадратов

Шахматный подход[править | править вики-текст]

Известно, что шахматы, как и магические квадраты, появились десятки веков назад в Индии. Поэтому неслучайно возникла идея шахматного подхода к построению магических квадратов. Впервые эту мысль высказал Эйлер. Он попытался получить полный магический квадрат непрерывным обходом коня. Однако, это сделать ему не удалось, поскольку в главных диагоналях суммы чисел отличались от магической константы. Тем не менее шахматная разбивка позволяет создавать любой магический квадрат. Цифры заполняются регулярно и построчно с учётом цвета ячеек.

Изображение схем построения магических квадратов

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. 404 (недоступная ссылка с 13-05-2013 (497 дней) — история)
  2. Telesmi
  3. Mathline: Magic Squares and Stars (англ.)
  4. В. Е. Еремеев «Традиционная наука Китая», Глава 5: Математика.
  5. Н.Макарова «Магический квадрат Дюрера»
  6. А. К. Дьюдени «Просеивание числового песка в поисках простых чисел»
  7. Н.Макарова «Совершенные магические квадраты»
  8. 1 2 Г.Александров «Идеальные магические квадраты порядка n = 9 + 18 k, где k=2,3,4,\dots»
  9. H.Danielsson «Ultramagisches Quadrat 8. Ordnung» (нем.)
  10. Н.Макарова «Идеальные квадраты чётно-чётного порядка»
  11. Энциклопедия «Кругосвет»: «Магический квадрат (недоступная ссылка с 13-05-2013 (497 дней) — история)».
  12. Н. Макарова «Методы построения магических квадратов (обзорная статья)»
  13. Г.Александров «Метод построения идеального магического квадрата нечётного порядка»
  14. Г.Александров
  15. Г.Александров
  16. Н.Макарова «Магические квадраты девятого порядка»
  17. Н.Макарова «Пандиагональные квадраты нечётных порядков кратных девяти»
  18. Г.Александров
  19. Н. Макарова
  20. Н.Макарова «Метод построения идеальных квадратов порядка n = 8k»
  21. Н. Макарова
  22. Е.Слкуни «Нетрадиционные пандиагональные магические квадраты 6-го порядка»
  23. Н.Макарова
  24. Г.Александров «Идеальный нетрадиционный магический квадрат порядка n=4k+2
  25. Г.Александров »Почти пандиагональные магические квадраты порядка 4k+2"
  26. Г.Александров «Идеальный совершенный магический квадрат четного порядка
  27. http://bspu.ab.ru/~festival/kon2001/teacher/konspect/inform/stepanowa_nowichihina.rtf

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]