Простое число

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Просто́е число́ — это натуральное число, имеющее только два различных натуральных делителя: единицу и само себя. При этом натуральные числа, которые больше единицы и не являются простыми, называются составными. Таким образом, все натуральные числа, бóльшие единицы, разбиваются на простые и составные. Изучением свойств простых чисел занимается теория чисел. В теории колец простым числам соответствуют неприводимые элементы.

Последовательность простых чисел начинается так:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, …[1]

Разложение натуральных чисел в произведение простых[править | править исходный текст]

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы, представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа — элементарные «строительные блоки» натуральных чисел.

Представление натурального числа в виде произведения простых называется разложением на простые или факторизацией числа. На настоящий момент неизвестны полиномиальные алгоритмы факторизации чисел, хотя и не доказано, что таких алгоритмов не существует. На предполагаемой большой вычислительной сложности задачи факторизации базируется криптосистема RSA и некоторые другие. Факторизация с полиномиальной сложностью теоретически возможна на квантовом компьютере с помощью алгоритма Шора.

Алгоритмы поиска и распознавания простых чисел[править | править исходный текст]

Простые способы нахождения начального списка простых чисел вплоть до некоторого значения дают Решето Эратосфена, решето Сундарама и решето Аткина.

Однако, на практике вместо получения списка простых чисел зачастую требуется проверить, является ли данное число простым. Алгоритмы, решающие эту задачу, называются тестами простоты. Существует множество полиномиальных тестов простоты, но большинство их являются вероятностными (например, тест Миллера — Рабина) и используются для нужд криптографии. В 2002 году было доказано, что задача проверки на простоту в общем виде полиномиально разрешима, но предложенный детерминированный тест Агравала — Каяла — Саксены имеет довольно большую вычислительную сложность, что затрудняет его практическое применение.

Для некоторых классов чисел существуют специализированные эффективные тесты простоты (см. ниже).

Бесконечность множества простых чисел[править | править исходный текст]

Простых чисел бесконечно много. Самое старое известное доказательство этого факта было дано Евклидом в «Началах» (книга IX, утверждение 20). Его доказательство может быть кратко воспроизведено так:

« Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор. Противоречие. »

Математики предлагали другие доказательства. Одно из них (приведённое Эйлером) показывает, что сумма величин, обратных к первым n простым числам, неограниченно растёт с ростом n.

Теорема о распределении простых чисел утверждает, что количество простых чисел меньших n, обозначаемое \pi(n), растёт как n/\ln(n).

Наибольшее известное простое[править | править исходный текст]

Издавна ведутся записи, отмечающие наибольшие известные на то время простые числа[2]. Один из рекордов поставил в своё время Эйлер, найдя простое число 2^{31}-1=2147483647.

Наибольшим известным простым числом по состоянию на февраль 2013 года является 2^{57885161} - 1. Оно содержит 17 425 170 десятичных цифр и является простым числом Мерсенна (M57885161). Его нашли 25 января 2013 года на математическом факультете университета UCLA в рамках проекта по распределённому поиску простых чисел Мерсенна GIMPS.

Числа Мерсенна выгодно отличаются от остальных наличием эффективного теста простоты: теста Люка — Лемера. Благодаря ему простые числа Мерсенна давно удерживают рекорд как самые большие известные простые.

За нахождение простых чисел из более чем 100 000 000 и 1 000 000 000 десятичных цифр EFF назначила[3] денежные призы соответственно в 150 000 и 250 000 долларов США. Ранее EFF уже присуждала призы за нахождение простых чисел из 1 000 000 и 10 000 000 десятичных цифр.

Простые числа специального вида[править | править исходный текст]

Существует ряд чисел, простота которых может быть установлена эффективно с использованием специализированных алгоритмов.

С использованием теста Бриллхарта — Лемера — Селфриджа (англ.)[уточнить] может быть проверена простота следующих чисел:

Для поиска простых чисел обозначенных типов в настоящее время используются проекты распределенных вычислений GIMPS, PrimeGrid, Ramsey@Home, Seventeen or Bust, Riesel Sieve, Wieferich@Home.

Некоторые свойства[править | править исходный текст]

  • Существуют многочлены, множество положительных значений которых при неотрицательных значениях переменных совпадает с множеством простых чисел. Одним из примеров является многочлен
    \begin{align}
&(k+2) (1 - [wz + h + j - q]^2 - [(gk + 2g + k + 1)(h + j) + h - z]^2 - [2n + p + q + z - e]^2 - \\
&[16(k + 1)^3(k + 2)(n + 1)^2 + 1 - f^2]^2 - [e^3(e + 2)(a + 1)^2 + 1 - o^2]^2 - [(a^2 - 1)y^2 + 1 - x^2]^2 - \\
&[16r^2y^4(a^2 - 1) + 1 - u^2]^2 - [((a + u^2(u^2 - a))^2 - 1)(n + 4dy)^2 + 1 - (x + cu)^2]^2 - [n + l + v - y]^2 - \\
&[(a^2 - 1)l^2 + 1 - m^2]^2 - [ai + k + 1 - l - i]^2 - [p + l(a - n - 1) + b(2an + 2a - n^2 - 2n - 2) - m]^2 - \\
&[q + y(a - p - 1) + s(2ap + 2a - p^2 - 2p - 2) - x]^2 - [z + pl(a - p) + t(2ap - p^2 - 1) - pm]^2)
\end{align}

содержащий 26 переменных и имеющий степень 25. Наименьшая степень для известных многочленов такого типа — 5 при 42 переменных; наименьшее число переменных — 10 при степени около 1,6·1045.[16][17][18] Этот результат является частным случаем доказанной Юрием Матиясевичем диофантовости любого перечислимого множества.

Открытые вопросы[править | править исходный текст]

Распределение простых чисел pn = fsn); Δsn = pn+1² — pn². Δpn = pn+1 — pn; Δpn = 2, 4, 6, … .

До сих пор существует много открытых вопросов относительно простых чисел, наиболее известные из которых были перечислены Эдмундом Ландау на Пятом Международном математическом конгрессе[19]:

  1. Проблема Гольдбаха (первая проблема Ландау): верно ли, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел?
  2. Вторая проблема Ландау: бесконечно ли множество «простых близнецов» — простых чисел, разность между которыми равна 2? (в 2013 году математик Чжан Итан (Yitang Zhang) из университета Нью-Гэмпшира[20][21] доказал, что существует бесконечно большое количество простых чисел, расстояние между которыми не превышает 70 миллионов.)
  3. Гипотеза Лежандра (третья проблема Ландау): верно ли, что для всякого натурального числа n между n^2 и (n + 1)^2 всегда найдётся простое число?
  4. Четвёртая проблема Ландау: бесконечно ли множество простых чисел вида n^2 + 1, где n — натуральное число?

Открытой проблемой является также существование бесконечного количества простых чисел во многих целочисленных последовательностях, включая числа Фибоначчи, числа Ферма и т. д.

Приложения[править | править исходный текст]

Большие простые числа (порядка 10^{300}) используются в криптографии с открытым ключом. Простые числа также используются в хеш-таблицах и для генерации псевдослучайных чисел (в частности, в ГПСЧ «Вихрь Мерсенна»).

Вариации и обобщения[править | править исходный текст]

См. также[править | править исходный текст]

Примечания[править | править исходный текст]

  1. последовательность A000040 в OEIS, см. также список простых чисел
  2. Рекорды простых чисел по годам
  3. EFF Cooperative Computing Awards (англ.)
  4. последовательность A001348 в OEIS
  5. Простые числа Мерсенна образуют последовательность A000668 в OEIS
  6. последовательность A000215 в OEIS
  7. последовательность A003261 в OEIS
  8. Простые числа Вудала образуют последовательность A050918 в OEIS
  9. последовательность A002064 в OEIS
  10. Простые числа Каллена образуют последовательность A050920 в OEIS
  11. последовательность A080075 в OEIS
  12. Простые числа Прота образуют последовательность A080076 в OEIS
  13. Доказательство. Нечётное число p, не кратное 3, равно 1 или 2 по модулю 3 и равно 1, 3, 5 или 7 по модулю 8. При возведении в квадрат это даёт 1 по модулю 3 и 1 по модулю 8. Вычитая 1, получаем 0 по модулю 3 и 0 по модулю 8. Следовательно, p^2-1 кратно 3 и кратно 8; следовательно, оно кратно 24.
  14. Weisstein, Eric W. Теорема Грина-Тао (англ.) на сайте Wolfram MathWorld.
  15. Эти 2 свойства непосредственно следуют из формул разложения суммы и разности степеней.
  16. Jones J. P., Sato D., Wada H., Wiens D (1976). «Diophantine representation of the set of prime numbers». Amer. Math. Mon. 83 (6): 449–464.
  17. Yuri Matiyasevich, Diophantine Equations in the XX Century
  18. Matijasevic’s polynomial. The Prime Glossary.
  19. Weisstein, Eric W. Landau's Problems (англ.) на сайте Wolfram MathWorld.
  20. Неизвестный математик совершил прорыв в теории простых чисел-близнецов
  21. Bounded Gaps Between Primes

Литература[править | править исходный текст]

Ссылки[править | править исходный текст]