Ударная волна

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Течение
жидкостей и газа
Ползучее течение
Ламинарное течение
Потенциальное течение
Отрыв течения
Вихрь
Неустойчивость
Турбулентность
Конвекция
Ударная волна
Сверхзвуковое течение

[шаблон]

Уда́рная волна́ — поверхность разрыва, которая движется внутри среды, при этом давление, плотность, температура и скорость испытывают скачок[1]. Часто путают с понятием волна от удара[источник не указан 61 день], это не одно и то же, во втором случае испытывают скачок не сами параметры, а их производные.

Общие макроскопические свойства ударных волн[править | править вики-текст]

Термодинамика ударных волн[править | править вики-текст]

С макроскопической точки зрения ударная волна представляет собой воображаемую поверхность, на которой термодинамические величины среды (которые, как правило, изменяются в пространстве непрерывно) испытывают устранимые особенности: конечные скачки. При переходе через фронт ударной волны меняются давление, температура, плотность вещества среды, а также скорость её движения относительно фронта ударной волны. Все эти величины изменяются не независимо, а связаны с одной-единственной характеристикой ударной волны, числом Маха. Математическое уравнение, связывающее термодинамические величины до и после прохождения ударной волны, называется ударной адиабатой, или адиабатой Гюгонио.

Ударные волны не обладают свойством аддитивности в том смысле, что термодинамическое состояние среды, возникающее после прохождения одной ударной волной нельзя получить последовательным пропусканием двух ударных волн меньшей интенсивности.

Происхождение ударных волн[править | править вики-текст]

Звук представляет собой колебания плотности, скорости и давления среды, распространяющиеся в пространстве. Уравнение состояния обычных сред таково, что в области повышенного давления скорость распространения возмущений малой амплитуды возрастает. Это неизбежно приводит к явлению "опрокидывания" возмущений конечной амплитуды, которые и порождают ударные волны.

В силу этого механизма, ударная волна в обычной среде — это всегда волна сжатия.

Описанный механизм предсказывает неизбежное превращение любой звуковой волны в слабую ударную волну. Однако в повседневных условиях для этого требуется слишком большое время, так что звуковая волна успевает затухнуть раньше, чем нелинейности становятся заметны. Для быстрого превращения колебания плотности в ударную волну требуются сильные начальные отклонения от равновесия. Этого можно добиться либо созданием звуковой волны очень большой громкости, либо механически, путём околозвукового движения объектов в среде. Именно поэтому ударные волны легко возникают при взрывах, при около- и сверхзвуковых движениях тел, при мощных электрических разрядах и т. д.

Микроскопическая структура ударной волны[править | править вики-текст]

Ширина ударных волн большой интенсивности имеет величину порядка длины свободного пробега молекул газа (более точно — ~10 длин свободного пробега, и не может быть менее 2 длин свободного пробега; данный результат получен Чепменом в начале 1950-х). Так как в макроскопической газодинамике длина свободного пробега должна рассматриваться равной нулю, чисто газодинамические методы непригодны для исследований внутренней структуры ударных волн большой интенсивности[2].

Для теоретического изучения микроскопической структуры ударных волн применяется кинетическая теория. Аналитически задача о структуре ударной волны не решается, но применяется ряд упрощённых моделей. Одной из таких моделей является модель Тамма-Мота-Смита[3][4].

Скорость распространения ударной волны[править | править вики-текст]

Скорость распространения ударной волны в среде превышает скорость звука в данной среде. Превышение тем больше, чем выше интенсивность ударной волны (отношение давлений перед и за фронтом волны): (pуд.волны — pсп.среды)/ pсп.среды[5].

Например, недалеко от центра ядерного взрыва скорость распространения ударной волны во много раз выше скорости звука. При удалении с ослаблением ударной волны, скорость её быстро снижается и на большой дистанции ударная волна вырождается в звуковую (акустическую) волну, а скорость её распространения приближается к скорости звука в окружающей среде. Ударная волна в воздухе при ядерном взрыве мощностью 20 килотонн проходит дистанции: 1000 м за 1,4 с, 2000 м — 4 с, 3000 м — 7 с, 5000 м — 12 с. Поэтому у человека, увидевшего вспышку взрыва, есть какое-то время для укрытия (складки местности, канавы и пр.) и тем самым уменьшения поражающего воздействия ударной волны[6].

Ударные волны в твёрдых телах (например, вызванные ядерным или обычным взрывом в скальной породе, ударом метеорита или кумулятивной струёй) при тех же скоростях имеют значительно бо́льшие давления и температуры. Твёрдое вещество за фронтом ударной волны ведёт себя как идеальная сжимаемая жидкость, то есть в нём как бы отсутствуют межмолекулярные и межатомные связи, и прочность вещества не оказывает на волну никакого воздействия. В случае наземного и подземного ядерного взрыва ударная волна в грунте не может рассматриваться, как поражающий фактор, так как она быстро затухает; радиус её распространения невелик и будет целиком в пределах размеров взрывной воронки [7], внутри которой и без того достигается полное поражение прочных подземных целей.

Ударные волны в специальных условиях[править | править вики-текст]

Гидрогазоаналогия
  • Ударная волна, путём нагрева среды, может вызвать экзотермическую химическую реакцию, что, в свою очередь, отразится и на свойствах самой ударной волны. Такой комплекс «ударная волна + реакция горения» носит название волны детонации.
  • В астрофизических объектах ударная волна может двигаться со скоростями, близкими к скорости света. В этом случае ударная адиабата модифицируется.
  • Ударные волны в замагниченной плазме также обладают своими характерными особенностями. При переходе через разрыв, изменяется также и величина магнитного поля, на что тратится дополнительная энергия. Это влечёт за собой существование максимально возможного коэффициента сжатия плазмы при сколь угодно сильных ударных волнах.
  • Касательные ударные волны представляют собой поверхность разрыва смешанного (нормального и тангенциального) типа.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Лойцянский Л. Г. Механика жидкости и газа. М.: ГИ ТТЛ, 1950. — 165 с.
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика:Учебное пособие в 10 т. Т. VI Гидродинамика. Москва: Наука, 1986 с.494
  3. Mott-Smith, H. M. (1951-06-15). «The Solution of the Boltzmann Equation for a Shock Wave». Physical Review 82 (6): 885. DOI:10.1103/PhysRev.82.885. Проверено 2010-04-12.
  4. Тамм И. Е. Труды Физического института им. Лебедева АН СССР 29 (1965). Работа выполнена в 1947 г.
  5. Ударная волна в Большой Советской Энциклопедии. Проверено 11 сентября 2011. Архивировано из первоисточника 3 февраля 2012.
  6. Ударная волна в воздухе. Проверено 11 сентября 2011. Архивировано из первоисточника 3 февраля 2012.
  7. . Impact and explosion cratering. New-York, 1977. С. 804

Литература[править | править вики-текст]