Число Маха

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Самолёт FA-18 Hornet, движущийся с околозвуковой скоростью. Наблюдается эффект Прандтля — Глоерта

Число́ Ма́ха (\mathsf{M}) — в механике сплошных сред — один из критериев подобия в механике жидкости и газа. Представляет собой отношение скорости течения в данной точке газового потока к местной скорости распространения звука в движущейся среде — назван по имени австрийского учёного Эрнста Маха (нем. E. Mach).

Историческая справка[править | править вики-текст]

Название число Маха и обозначение М предложил в 1929 году[1] Якоб Аккерет[2] (J.Ackeret). Ранее в литературе встречалось название число Берстоу[1][3] (Bairstow, обозначение \mathsf{Ba}), а в советской послевоенной научной литературе — название число Маевского[4] (число Маха — Маевского) по имени основателя русской научной школы баллистики, пользовавшегося этой величиной. В некоторых советских учебниках пятидесятых годов обозначение \mathsf{M} употребляется без специального названия[5], что, по-видимому, связано с критической официальной оценкой философских позиций Э. Маха.

Число Маха в газовой динамике[править | править вики-текст]

Число Маха

\mathsf{M}=\frac{v}{a},

где v — скорость потока, а a — местная скорость звука,

является мерой влияния сжимаемости среды в потоке данной скорости на его поведение: из уравнения состояния идеального газа следует, что относительное изменение плотности (при постоянной температуре) пропорционально изменению давления:

\frac{d\rho}{\rho}\sim\frac{dp}{p},

из закона Бернулли разность давлений в потоке dp\sim\rho v^2, то есть относительное изменение плотности:

\frac{d\rho}{\rho}\sim\frac{dp}{p}\sim\frac{\rho v^2}{p}.

Поскольку скорость звука a\sim\sqrt{p/\rho}, то относительное изменение плотности в газовом потоке пропорционально квадрату числа Маха:

\frac{d\rho}{\rho}\sim\frac{v^2}{a^2}=\mathsf{M}^2.

Наряду с числом Маха используются и другие характеристики безразмерной скорости течения газа:

коэффициент скорости

\lambda=\frac{v}{v_K}=\sqrt{\frac{\gamma+1}{2}}\mathsf{M}\left(1+\frac{\gamma-1}{2}\mathsf{M}^2\right)^{-1/2}

и безразмерная скорость

\Lambda=\frac{v}{v_\max}=\sqrt{\frac{\gamma-1}{2}}\mathsf{M}\left(1+\frac{\gamma-1}{2}\mathsf{M}^2\right)^{-1/2},

где v_K — критическая скорость,

v_\max — максимальная скорость в газе,
\gamma=\frac{c_p}{c_v} — показатель адиабаты газа, равный отношению удельных теплоёмкостей газа при постоянных давлении и объёме соответственно.

Важность величины числа Маха[править | править вики-текст]

Важное значение числа Маха объясняется тем, что оно определяет, превышает ли скорость течения газовой среды (или движения в газе тела) скорость звука или нет. Сверхзвуковые и дозвуковые режимы движения имеют принципиальные различия, для авиации это различие выражается в том, что при сверхзвуковых режимах возникают узкие слои быстрого значительного изменения параметров течения (ударные волны), приводящие к росту сопротивления тел при движении, концентрации тепловых потоков у их поверхности и возможности прогорания корпуса тел и т. п.

Предельно упрощённое объяснение числа Маха[править | править вики-текст]

Для понимания числа Маха неспециалистами очень упрощённо можно сказать, что численное выражение числа Маха зависит, прежде всего, от высоты полёта (чем больше высота, тем ниже скорость звука и выше число Маха). Число Маха — это истинная скорость в потоке (то есть скорость, с которой воздух обтекает, например, самолёт), делённая на скорость звука в конкретной среде, поэтому зависимость является обратно пропорциональной. У земли скорость, соответствующая 1 Маху, будет равна приблизительно 300 м/с (скорость, с которой люди привычно считают расстояние приближающейся грозы, измеряя время от вспышки молнии до дошедших раскатов грома) или 1100 км/ч. Однако, если, например, приборы самолёта показывают истинную скорость самолёта 1070 км/ч на высоте 11000 м, такой самолёт движется со скоростью более 1 Маха, то есть со сверхзвуковой скоростью.

Такое объяснение не может использоваться для каких бы то ни было математических расчётов скорости или иных математических операций по аэродинамике.

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • Число Маха // Физическая энциклопедия. — М.: Советская энциклопедия, 1988.

Примечания[править | править вики-текст]

  1. 1 2 Чёрный Г. Г. Газовая динамика. — М.: Наука, 1988. — С. 53. — 424 с. — ISBN 5–02–013814–2.
  2. Карман Т. Аэродинамика. Избранные темы в их историческом развитии / Под ред. А. В. Борисова. — М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — С. 111. — 208 с. — ISBN 5–93972–094–3.
  3. Гудымчук В. Подобие тепловое // Гл. ред. П. Н. Беликов Физический словарь. — М.: ОНТИ НКТП СССР, 1938. — Т. 4. — С. (столбцы) 228–229.
  4. Мхитарян А. М. Аэродинамика. — М., 1970. — С. 25. — 446 с. Переиздание: . — М.: Эколит, 2012. — ISBN 978–5–4365–0050–8.
  5. Аржанников Н. С., Мальцев В. Н. Аэродинамика. — М., 1956. — С. 314. — 484 с. Переиздание: . — М.: Эколит, 2011. — ISBN 978–5–4365–0030–0.