Задачи тысячелетия

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Задачи тысячелетия
Равенство классов P и NP
Гипотеза Ходжа
Гипотеза Пуанкаре (решена)
Гипотеза Римана
Решение уравнений
квантовой теории
Янга — Миллса
Существование и гладкость 
решений уравнений
Навье — Стокса
Гипотеза
Бёрча — Свиннертон-Дайера

Задачи тысячелетия — семь открытых математических проблем, определённых Математическим институтом Клэя в 2000 году как «важные классические задачи, решение которых не найдено вот уже в течение многих лет», за решение каждой из которых обещано вознаграждение в 1 млн долларов США. Существует историческая параллель между задачами тысячелетия и списком проблем Гильберта 1900 года, оказавшим существенное влияние на развитие математики в XX веке; из 23 проблем Гильберта большинство уже решены, и только одна — гипотеза Римана — вошла в список задач тысячелетия.

По состоянию на 2018 год только одна из семи задач тысячелетия (гипотеза Пуанкаре) решена[⇨].

Решенные проблемы[править | править код]

Гипотеза Пуанкаре[править | править код]

Считается наиболее известной проблемой топологии. Неформально говоря, она утверждает, что всякий трёхмерный «объект», обладающий некоторыми свойствами трёхмерной сферы (например, каждая петля внутри него должна быть стягиваема), обязан быть сферой с точностью до деформации.

Премия за доказательство гипотезы Пуанкаре присуждена в 2010 году российскому математику Григорию Перельману[1], опубликовавшему в 2002 году серию работ, из которых следует справедливость гипотезы, но учёный отказался её принять, как раньше отказался от Филдсовской премии[2].

Нерешенные проблемы[править | править код]

Равенство классов P и NP[править | править код]

Если положительный ответ на какой-то вопрос можно быстро (за полиномиальное время) проверить (используя некоторую вспомогательную информацию, называемую сертификатом), то верно ли, что и сам ответ (вместе с сертификатом) на этот вопрос можно быстро найти? Задачи второго типа относятся к классу P, первого — к классу NP. Проблема равенства этих классов является одной из важнейших проблем теории алгоритмов.

Гипотеза Ходжа[править | править код]

Важная проблема алгебраической геометрии. Гипотеза описывает классы когомологий на комплексных проективных многообразиях, реализуемые алгебраическими подмногообразиями.

Гипотеза Римана[править | править код]

Гипотеза гласит, что все нетривиальные (то есть имеющие ненулевую мнимую часть) нули дзета-функции Римана имеют действительную часть 1/2. Её доказательство или опровержение будет иметь далеко идущие последствия для теории чисел, особенно, в области распределения простых чисел. Гипотеза Римана была восьмой в списке проблем Гильберта. В случае публикации контрпримера к гипотезе Римана, учёный совет института Клэя вправе решить, можно ли считать данный контрпример окончательным решением проблемы, или же проблема может быть переформулирована в более узкой форме и оставлена открытой (в последнем случае автору контрпримера может быть выплачен небольшой приз)[3][4].

Теория Янга — Миллса[править | править код]

Задача из области физики элементарных частиц. Требуется доказать, что для любой простой компактной калибровочной группы квантовая теория Янга — Миллса для пространства (четырёхмерного пространства-времени) существует и имеет ненулевую щель в спектре описываемых ей частиц (возбуждений), так что эти частицы имеют ненулевую массу. Это утверждение соответствует экспериментальным данным и численному моделированию, однако доказать его до сих пор не удалось.

Существование и гладкость решений уравнений Навье — Стокса[править | править код]

Уравнения Навье — Стокса описывают движение вязкой жидкости. Одна из важнейших задач гидродинамики.

Гипотеза Бёрча — Свиннертон-Дайера[править | править код]

Гипотеза связана с уравнениями эллиптических кривых и множеством их рациональных решений.

Примечания[править | править код]

  1. Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman Архивировано 22 марта 2010 года. (англ.). Пресс-релиз математического института Клэя.
  2. http://www.gazeta.ru/science/2010/03/23_a_3341933.shtml «Посчитал и отказался». Российский математик Григорий Перельман отказался от премии в $1 млн за решение одной из математических задач тысячелетия.
  3. Weisstein, Eric W. Riemann Hypothesis (англ.) на сайте Wolfram MathWorld.
  4. Rules for the Millennium Prizes Архивная копия от 10 декабря 2011 на Wayback Machine

Ссылки[править | править код]