Изохорный процесс

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Тепловые процессы
Thermodynamics navigation image.svg
Статья является частью одноименной серии.
Адиабатический процесс
Изохорный процесс
Изобарный процесс
Изотермический процесс
Изоэнтропийный процесс
Изоэнтальпийный процесс
Политропный процесс
править
См. также «Физический портал»

Изохорический или изохорный процесс (от др.-греч. ἴσος «равный» и χώρος «место») — термодинамический процесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать (охлаждать) вещество в сосуде, который не изменяет своего объёма.

При изохорическом процессе давление идеального газа прямо пропорционально его температуре (см. Закон Шарля). В реальных газах закон Шарля не выполняется.

На графиках изображается линиями, которые называются изохоры. Для идеального газа они являются прямыми во всех диаграммах, которые связывают параметры: T (температура), V (объем) и P (давление).

История[править | править вики-текст]

Наиболее часто первые исследования изохорного процесса связывают с Гильомом Амптоном. В своей работе "Парижские мемуары" в 1702 году он описал поведение газа в фиксированном объёме[Комм 1] внутри так называемого "воздушного термометра". Жидкость в нём находится в равновесии под воздействием давления газа в резервуаре и атмосферным давлением. При нагревании давление в резервуаре увеличивается и жидкость вытесняется в выступающий столб. Зависимость между температурой и давлением была установлена в виде[1][Комм 2]:

В 1801 году Джон Дальтон в двух своих эссе опубликовал эксперимент, в котором установил, что все газы и пары, который он исследовал при постоянном давлении одинакового расширяются при изменении температуры , если начальная и конечная температура одинакова[2][3]. Данный закон получил название закона Гей-Люссака, так как Гей-Люссак, вскоре провёл самостоятельные эксперименты и подтвердил одинаковое расширение различных газов, причём получив практически тот же самый коэффициент, что и Дальтон[3]. Впоследствии он же объединил свой закон с законом Бойля — Мариотта[4], что позволило описывать в том числе и изохорный процесс.

Термодинамика процесса[править | править вики-текст]

График изохорного процесса на диаграмме (P,V)

Из определения работы следует, что изменение работы при термодинамическом процессе равно[5]:

Чтобы определить полную работу процесса проинтегрируем данное выражение[5]:

,

Но, поскольку объем неизменен, то такой интеграл равен нулю. Итак, при изохорном процессе газ работы не совершает[6]:

.

Это же можно показать на графике изохорного процесса. С математической точки зрения, работа процесса равна площади такого графика[5]. Но график изохорного процесса является перпендикуляром к оси абсцисс. Таким образом, площадь под ним равна нулю.

Изменение внутренней энергии идеального газа можно найти по формуле[7]:

,

где i — число степеней свободы, которое зависит от количества атомов в молекуле (3 для одноатомной (например, неон), 5 для двухатомной (например, кислород) и 6 для трёхатомной и более (например, молекула водяного пара)).

Из определения и формулы теплоёмкости и, формулу для внутренней энергии можно переписать в виде[7]:

,

где  — молярная теплоёмкость при постоянном объёме.

Используя первое начало термодинамики можно найти количество теплоты при термодинамическом процессе[8]:

Но при изохорном процессе газ не выполняет работу[6]. То есть, имеет место равенство:

,

то есть вся теплота, которую получает газ идёт на изменение его внутренней энергии.

Энтропия при изохорном процессе[править | править вики-текст]

Поскольку в системе при изохорном процессе происходит теплообмен с внешней средой, то происходит изменение энтропии. Из определения энтропии следует[9]:

Выше была выведена формула для определения количества теплоты. Перепишем её в дифференциальном виде[10][Комм 3]:

,

где ν — количество вещества,  — молярная теплоемкость при постоянном объеме. Итак, микроскопическое изменение энтропии при изохорном процессе можно определить по формуле[10]:

Или, если проинтегрировать последнее выражение, полное изменение энтропии в этом процессе[10]:

В данном случае выносить выражение молярной теплоемкости при постоянном объеме за знак интеграла нельзя, поскольку она является функцией, которая зависит от температуры.

Практическое применение теории изохорного процесса[править | править вики-текст]

p-V диаграмма цикла Отто

При идеальном цикле Отто, который приближённо воспроизведён в бензиновом двигателе внутреннего сгорания, такты 2-3 и 4-1 являются изохорными процессами. Работа, которая совершается на выходе двигателя равна разности работ который произведёт газ над поршнем во время третьего такта (т.е рабочего хода), и работы, которую затрачивает поршень на сжатие газа во время второго такта. Так как в цикле Отто используется система принудительного зажигания смеси, то происходит сжатие газа в 7—12 раз[11].

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Комментарии[править | править вики-текст]

  1. В приведённом опыте изменения объёма пренебрежимо малы по сравнению с изменением давления
  2. При эксперименте использовалась шкала температура в градусах Цельсия, а не Кельвина
  3. В источнике даны формулы для всех термодинамических процессов. В частности, данная формула в полном виде имеет значеине , но при изохорном процессе dV=0

Источники[править | править вики-текст]

Список литературы[править | править вики-текст]

  1. Кириллин В. А., Сычёв В. В., Шейндлин А. Е. Техническая термодинамика: учебник для вузов. — М.: Издательство МЭИ, 2008. — 496 с.
  2. Кудрявцев П. С. История физики. — М.: Гос. учебно-педагог. изд-во, 1956. — Т. 1. От античной физики до Менделеева. — 564 с. — 25 000 экз.
  3. Ландау, Л. Д., Лифшиц, Е. М. Статистическая физика. Часть 1. — Издание 5-е. — М.: Физматлит, 2005. — 616 с. — («Теоретическая физика», том V). — ISBN 5-9221-0054-8.
  4. Савельев И. В. Курс общей физики:Молекулярная физика и термодинамика. — М.: Астрель, 2001. — Т. 3. — 208 с. — 7000 экз. — ISBN 5-17-004585-9.
  5. Сивухин Д. В. Общий курс физики. — М.: Наука, 1975. — Т. II. Термодинамика и молекулярная физика. — 519 с.