Когомологии Александрова — Чеха

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Когомологии Александрова — Чеха — теория когомологий, основанная на свойствах открытых покрытий топологического пространства. Такие когомологии оказываются удобными при изучении патологических пространств.

Идея построения заключается в том, что если покрытие пространства составлено из достаточно маленьких множеств, то когомологии нерва покрытия являются хорошей аппроксимацией когомологий самого пространства.

Названы в честь Александровa и Чеха. Обычно обозначаются .

Построение[править | править код]

Пусть  — топологическое пространство,  — открытое покрытие . Обозначим через нерв покрытия .

Предположим, покрытие вписано в покрытие , то есть любое множество из содержится в некотором множестве из . Выберем отображение, сопоставляющее каждому множеству из содержащее его множество из . Это отображение индуцирует отображение нервов . Индуцированный гомоморфизм колец когомологий не зависит от выбора . (Поскольку мы работаем с симплициальными комплексами, неважно, какую из теорий когомологий мы выбираем.)

Кольца когомологий с гомоморфизмами образуют обратную систему. Это даёт возможность перейти к обратному пределу

Полученное кольцо называется когомологиями Чеха пространства с коэффициентами в .

Связь с другими теориями когомологий[править | править код]

Польская окружность

См. также[править | править код]

Ссылки[править | править код]