Кроссинговер

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Рекомбинация заключается в разрыве и переклеивании родительских хромосом

Кроссинго́вер (от англ. crossing over — пересечение) или перекрёст — процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза. Помимо мейотического, описан также митотический кроссинговер. Хромосома разделяется на эти участки в определённых точках, одних и тех же для одного вида, что может быть определением вида на генетическом уровне, место расположения этих точек задаётся единственным геном.

Поскольку кроссинговер вносит возмущения в картину сцепленного наследования, его удалось использовать для картирования «групп сцепления» (хромосом). Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя генами, тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования. Первые карты хромосом были построены в 1913 году для классического экспериментального объекта плодовой мушки Drosophila melanogaster Альфредом Стёртевантом, учеником и сотрудником Томаса Ханта Моргана.

История открытия[править | править код]

Иллюстрация кроссинговера, Томас Хант Морган (1916)

Первыми кроссинговер обнаружили Томас Х. Морган и его студент Альфред Х. Стертевант у плодовой мушки Drosophila melanogaster в 1911 году при анализе многочисленных X-хромосомных мутаций. Морган анализировал результаты двух скрещиваний: в одном самок с жёлтым телом и белыми глазами скрещивали с самцами дикого типа (серое тело, красные глаза), а в другом скрещивали самок с белыми глазами и маленькими крыльями и самцами дикого типа. В первом скрещивании в первом поколении (F1) все самки были дикого типа, а у самцов проявились оба мутантных признака; во втором поколении (F2) подавляющее большинство мух имели фенотипы родителей (дикого типа или жёлтое тело и белые глаза), но у менее чем 1 % мух имелось либо жёлтое тело с красными глазами, либо серое тело с белыми глазами. Во втором скрещивании в F2 также появлялись мухи с рекомбинантными фенотипами, причём их доля составила 34,5 %[1].

К моменту проведения вышеописанных экспериментов уже были описаны хиазмы при синапсисе гомологичных хромосом в мейозе у земноводных (их описал Ф. А. Янссенс в 1909 году). Морган предположил, что именно хиазмы были теми точками, в которых хромосомы обменивались своими участками, и для описания этого процесса ввёл термин «кроссинговер». Разность в доле рекомбинантных фенотипов, полученных в первом и втором экспериментах, он объяснил различным расстоянием между генами: частота формирования хиазм между близко расположенными генами меньше, чем между более удалёнными[1].

Цитологические основы[править | править код]

В 1909 году Ф. А. Янссенс описал образование хиазм — характерных структур, которые формируют гомологичные хромосомы при кроссинговере — при мейозе у земноводных. Янссенс также высказал предположение, что хиазмы могут свидетельствовать об обмене хромосом генетическим материалом. Доказательства того, что образование хиазм сопровождается обменом участками гомологичных хромосом, были получены в 1931 году для кукурузы и для дрозофилы[2].

Исследованиями на кукурузе занимались Харриет Крейтон и Барбара МакКлинток. Они изучали особую форму кукурузы, дигетерозиготную по двум генам: c и wx, которые определяют окраску эндосперма. Гены c и wx локализованы на одной хромосоме, причём у исследуемой формы кукурузы одна из двух гомологичных хромосом, содержащих эти гены, на одном конце несла протяжённый участок гетерохроматина, а на другом — транслоцированный участок другой хромосомы. Вторая гомологичная хромосома указанных цитогенетических особенностей не имела. Исследования рекомбинантного потомства, полученного при скрещивании описанной формы кукурузы с растениями, рецессивными по генам c и wx, показали, что у рекомбинантных растений происходило перемещение гетерохроматинового блока или транслоцированного участка на вторую гомологичную хромосому, то есть хромосомы действительно физически обменивались своими участками[3].

Исследования на дрозофиле по той же схеме проводил К. Штерн. Он получил линию самок дрозофилы, дигетерозиготных по генам cr и B, которые локализованы на X-хромосоме и определяют окраску и форму глаз соответственно. У этих самок X-хромосомы были гетероморфные: одна из них была Г-образная, так как содержала небольшой фрагмент Y-хромосомы, а другая была сильно укорочена из-за транслокации её участка (не содержащего центромеру) на четвёртую хромосому. Когда описанных самок скрестили с самцами, рецессивными по генам cr и B и имеющими нормальные X- и Y-хромосомы. Рекомбинантное потомство (только самок, так как Y-хромосому самцов можно спутать с Г-образной X-хромосомой) исследовали цитологически и установили, что их X-хромосомы претерпели структурные изменения, что свидетельствует о факте переноса фрагментов между X-хромосомами, то есть кроссинговере[4].

Когда физическая природа кроссинговера была окончательно установлена, возник вопрос, на какой стадии клеточного цикла он происходит. Теоретически кроссинговер может происходить до репликации хромосом (на стадии двух нитей), так и после неё (на стадии четырёх нитей). Для ответа на этот вопрос был использован тетрадный анализ с использованием сумчатого гриба — хлебной плесени Neurospora crassa. Образование гаплоидных спор у этого организма происходит внутри особых структур — сумок (асков) и включает два деления: мейоз и последующий митоз, поэтому зрелый аск содержит восемь гаплоидных спор. Ось веретена деления при мейозе совпадает с продольной осью аска, поэтому в аске в один ряд располагаются четыре пары гаплоидных спор, и генотип каждой пары спор идентичен. При исследовании порядка расположения и генотипа спор в аске было показано, что кроссинговер происходит после удвоения хромосом, то есть когда каждая из них состоит из четырёх хроматид. Если бы кроссинговер происходил до репликации хромосом, то в аске гриба, дигетерозиготного по генам A и B (то есть имеющего генотип AaBb), содержалось бы 4 споры с генотипом Ab и 4 споры с генотипом aB. В действительности в аске выявляются споры четырёх генотипов, порядок расположения которых в аске зависит от того, между какими несестринскими хроматидами произошёл кроссинговер. Тот факт, что кроссинговер происходит на стадии четырёх хроматид, удалось продемонстрировать и на дрозофиле. Это сделали в 1925 году К. Бриджес и И. Андерсон[5].

В настоящее время известно, что кроссинговер происходит в профазе первого деления мейоза, которую подразделяют на несколько стадий. Первая стадия, лептотена, знаменуется конденсацией удвоенных хромосом, благодаря которой они становятся видимыми. Спаривание участков гомологичных хромосом начинается в следующей стадии, зиготене, а на следующей стадии, пахитене, гомологичные хромосомы становятся спаренными по всей своей длине. Такие структуры, состоящие из двух соединённых гомологичных хромосом, называют бивалентами, а сам процесс спаривания гомологов также называют синапсисом. Гомологичные хромосомы удерживаются вместе сложным белковым комплексом, который называется синаптонемным комплексом. На следующей стадии, в диплотене, хромосомы разделяются, но продолжают удерживаться в местах хиазм, где происходит кроссинговер. Последняя стадия профазы первого деления мейоза, диакинез, сопровождается конденсацией хромосом, при которой становятся различимыми все четыре хроматиды, хиазмы остаются[6].

Молекулярный механизм[править | править код]

Модель гомологичной рекомбинации при мейозе

В основе кроссинговера лежит гомологичная рекомбинация, которая также играет важную роль в репарации двуцепочечных разрывов. При кроссинговере она также начинается с двуцепочечного разрыва, который, однако, вносится искусственно. Далее экзонуклеазы обрабатывают концы разрыва, из-за чего образуются 3'-одноцепочечные концы. Свободный одноцепочечный конец вторгается в гомологичный дуплекс, вытесняя одну из его цепей, и наращивается, вытесняя цепь всё сильнее; в результате образуется так называемая D-петля. В результате образуется гетеродуплексный участок, который содержит по одной цепи от каждой из исходных ДНК. Когда вытесненная цепь комплементарно связывается с другой стороной разрыва, его второй конец захватывается исходным дуплексом, а утраченный материал возмещается за счёт синтеза новой ДНК. В результате между двумя дуплексами образуются два перекрёста, которые носят название структур Холлидея. Объединённая рекомбинантная молекула, состоящая из двух цепей и включающая две структуры Холлидея, разрешается с образованием двух дуплексов из-за образования разрывов в двух соединяющих их цепях. Если разрывы были внесены в те цепи, которые участвовали в первоначальной инвазии и захвате конца одноцепочечного разрыва, то кроссинговера не происходит. Если же разрывы вносятся в цепи, которые не участвовали в первоначальном обмене, то кроссинговер происходит[7].

Множественный кроссинговер[править | править код]

Двойной кроссинговер

Кроссинговер и картирование генов[править | править код]

Примечания[править | править код]

Литература[править | править код]

  • Инге-Вечтомов С.Г. Генетика с основами селекции. — СПб.: Издательство Н-Л, 2010. — 718 с. — ISBN 978-5-94869-105-3.
  • Клаг Уильям С., Каммингс Майкл Р., Спенсер Шарлотта А., Палладино Майкл А. Основы генетики. — М.: ТЕХНОСФЕРА, 2016. — 944 с. — ISBN 978-5-94836-416-2.
  • Кребс Дж., Голдштейн Э., Килпатрик С. Гены по Льюину. — М.: Лаборатория знаний, 2017. — 919 с. — ISBN 978-5-906828-24-8.