Предикат

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Предика́т (лат. praedicatum «заявленное, упомянутое, сказанное») — это утверждение, высказанное о субъекте. Субъектом высказывания называется то, о чём делается утверждение.

Предикат в программировании — выражение, использующее одну или более величину с результатом булева типа.

Далее в этой статье слово предикат используется в значении высказывательной формы.

Определение[править | править код]

Предика́т (-местный, или -арный) — это функция с множеством значений (или {ложь, истина}), определённая на множестве . Таким образом, каждый набор элементов множества характеризуется либо как «истинный», либо как «ложный».

Предикат можно связать с математическим отношением: если кортеж принадлежит отношению, то предикат будет возвращать на ней 1. В частности, одноместный предикат определяет отношение принадлежности некоторому множеству.

Предикат — один из элементов логики первого и высших порядков. Начиная с логики второго порядка, в формулах можно ставить кванторы по предикатам.

Предикат называют тождественно-истинным и пишут:

если на любом наборе аргументов он принимает значение .

Предикат называют тождественно-ложным и пишут:

если на любом наборе аргументов он принимает значение .

Предикат называют выполнимым, если хотя бы на одном наборе аргументов он принимает значение .

Так как предикаты принимают только два значения, то к ним применимы все операции булевой алгебры, например: отрицание, импликация, конъюнкция, дизъюнкция и т. д.

Примеры[править | править код]

Обозначим предикатом отношение равенства («»), где и принадлежат (множеству вещественных чисел). В этом случае предикат будет принимать истинное значение для всех равных и .

Более житейским примером может служить предикат ПРОЖИВАЕТ для отношения « проживает в городе на улице » или ЛЮБИТ для « любит » для и принадлежащих , где множество  — это множество всех людей.

Предикат — это то, что утверждается или отрицается о субъекте суждения.

Операции над предикатами[править | править код]

Предикаты, так же, как высказывания, принимают два значения: истинное и ложное, поэтому к ним применимы все операции логики высказываний. Рассмотрим применение операций логики высказываний к предикатам на примерах одноместных предикатов.

Логические операции[править | править код]

Конъюнкцией двух предикатов A(x) и B(x) называется новый предикат , который принимает значение «истина» при тех и только тех значениях х из Т, при которых каждый из предикатов принимает значение «истина», и принимает значение «ложь» во всех остальных случаях. Множеством истинности Т предиката является пересечение множеств истинности предикатов A(x) — T1 и B(x) — T2, то есть T = T1 ∩ T2. Например: A(x): «x — чётное число», B(x): «x кратно 3». A(x) B(x) — «x — чётное число и x кратно 3». То есть предикат «x делится на 6».

Дизъюнкцией двух предикатов A(x) и B(x) называется новый предикат , который принимает значение «ложь» при тех и только тех значениях x из T, при которых каждый из предикатов принимает значение «ложь» и принимает значение «истина» во всех остальных случаях. Областью истинности предиката является объединение областей истинности предикатов A(x) и B(x).

Отрицанием предиката A(x) называется новый предикат, который принимает значение «истина» при всех значениях x из T, при которых предикат A(x) принимает значение «ложь», если A(x) принимает значение «истина».

Множеством истинности предиката x X является дополнение T' к множеству T в множестве X.

Импликацией предикатов A(x) и B(x) называется новый предикат , который является ложным при тех и только тех значениях x из T, при которых A(x) принимает значение «истина», а B(x) — значение «ложь», и принимает значение «истина» во всех остальных случаях. Читают: «Если A(x), то B(x)».

Например. A(x): «Натуральное число x делится на 3». B(x): «Натуральное число x делится на 4», можно составить предикат: «Если натуральное число x делится на 3, то оно делится и на 4». Множеством истинности предиката является объединение множества T2 — истинности предиката B(x) и дополнения к множеству T1 истинности предиката A(x).

Кванторные операции[править | править код]

См. также[править | править код]

Логотип Викисловаря
В Викисловаре есть статья «предикат»

Литература[править | править код]

  • Гуц А.К. Математическая логика и теория алгоритмов. — Наследие, Диалог-Сибирь, 2003.
  • Ершов Ю.Л., Палютин Е.А. Математическая логика. — М.: Наука, Физматлит, 1987.
  • Игошин В.И. Математическая логика и теория алгоритмов. — Academia, 2008.
  • Клини С.К. Математическая логика. — М.:Мир, 1973.
  • Мендельсон Э. Введение в математическую логику. — М. Наука, 1971.
  • Новиков П.С. Элементы математической логики. — М.:Наука, 1973.