Формулы Виета

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Теорема Виета»)
Перейти к: навигация, поиск

Формулы Виета — формулы, связывающие коэффициенты многочлена и его корни.

Этими формулами удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

История[править | править вики-текст]

Эти тождества неявно присутствуют в работах Франсуа Виета. Однако Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем виде.[1]:138—139

Формулировка[править | править вики-текст]

Если  — корни многочлена

(каждый корень взят соответствующее его кратности число раз), то коэффициенты выражаются в виде симметрических многочленов от корней[2], а именно:

Иначе говоря, равно сумме всех возможных произведений из корней.

Если старший коэффициент многочлена , то для применения формулы Виета необходимо предварительно разделить все коэффициенты на (это не влияет на значение корней многочлена). В этом случае формулы Виета дают выражение для отношений всех коэффициентов к старшему. Из последней формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также целочисленный.

Доказательство[править | править вики-текст]

Доказательство осуществляется рассмотрением равенства, полученного разложением многочлена по корням, учитывая, что

Приравнивая коэффициенты при одинаковых степенях (теорема единственности), получаем формулы Виета.

Примеры[править | править вики-текст]

Квадратное уравнение[править | править вики-текст]

Если и  — корни квадратного уравнения ,то

В частном случае, если (приведенная форма ), то

Кубическое уравнение[править | править вики-текст]

Если  — корни кубического уравнения , то

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Florian Cajori, A History of Mathematics, 5th edition 1991
  2. Алгебра многочленов, 1980, с. 26—28..

Литература[править | править вики-текст]

  • Винберг Э. Б. Алгебра многочленов. Учебное пособие для студентов-заочников III—IV курсов физико-математических факультетов педагогических институтов. — М.: Просвещение, 1980.
  • Weisstein, Eric W. Vieta's Formulas / From MathWorld--A Wolfram Web Resource (англ.)
  • Hazewinkel, Michiel, ed. (2001), "Viète theorem", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4 (англ.)
  • Funkhouser, H. Gray (1930), "A short account of the history of symmetric functions of roots of equations", American Mathematical Monthly (Mathematical Association of America) 37 (7): 357–365, doi:10.2307/2299273, JSTOR 2299273 (англ.)