Хорда (геометрия)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
1 — секущая, 2 — хорда AB (отмечена красным цветом), 3 — сегмент (отмечен зелёным цветом), 4 — дуга

Хо́рда (от греч. χορδή — струна) в планиметрии — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы, гиперболы).

Хорда находится на секущей прямой — прямой линии, пересекающей кривую в двух или более точках. Плоская фигура, заключённая между кривой и её хордой называется сегментом, а часть кривой, находящаяся между двумя крайними точками хорды называется дугой. В случае с замкнутыми кривыми (например, окружностью, эллипсом) хорда образует пару дуг с одними и теми же крайними точками по разные стороны хорды. Хорда, проходящая через центр окружности, является её диаметром. Диаметр — самая длинная хорда в окружности.

Свойства хорд окружности[править | править вики-текст]

Хорда и расстояние до центра окружности[править | править вики-текст]

  • Если расстояния от центра окружности до хорд равны, то эти хорды равны.
  • Если хорды равны, то расстояния от центра окружности до этих хорд равны.
  • Если хорда больше, то расстояние от центра окружности до этой хорды меньше. Если хорда меньше, то расстояние от центра окружности до этой хорды больше.
  • Если расстояние от центра окружности до хорды меньше, то эта хорда больше. Если расстояние от центра окружности до хорды больше, то эта хорда меньше.
  • Наибольшая возможная хорда является диаметром.
  • Наименьшая возможная хорда является точкой.
  • Если хорда проходит через центр окружности, то эта хорда является диаметром.
  • Если расстояние от центра окружности до хорды равно радиусу, то эта хорда является точкой.
  • Серединный перпендикуляр к хорде проходит через центр окружности.

Хорда и диаметр[править | править вики-текст]

  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр перпендикулярен этой хорде.
  • Если диаметр перпендикулярен хорде, то этот диаметр делит эту хорду пополам.
  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр делит дуги, стягиваемые этой хордой, пополам.
  • Если диаметр делит дугу пополам, то этот диаметр делит пополам хорду, стягивающую эту дугу.
  • Если диаметр перпендикулярен хорде, то этот диаметр делит дуги, стягиваемые этой хордой, пополам.
  • Если диаметр делит дугу пополам, то этот диаметр перпендикулярен хорде, стягивающей эту дугу.

Хорда и радиус[править | править вики-текст]

  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус перпендикулярен этой хорде.
  • Если радиус перпендикулярен хорде, то этот радиус делит эту хорду пополам.
  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус делит дугу, стягиваемую этой хордой, пополам.
  • Если радиус делит дугу пополам, то этот радиус делит пополам хорду, стягивающую эту дугу.
  • Если радиус перпендикулярен хорде, то этот радиус делит дугу, стягиваемую этой хордой, пополам.
  • Если радиус делит дугу пополам, то этот радиус перпендикулярен хорде, стягивающей эту дугу.

Хорда и вписанный угол[править | править вики-текст]

  • Если вписанные углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то эти углы равны.
  • Если пара вписанных углов опирается на одну и ту же хорду и вершины этих углов лежат по разные стороны этой хорды, то сумма этих углов равна 180°.
  • Если вписанный и центральный углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то вписанный угол равен половине центрального угла.
  • Если вписанный угол опирается на диаметр, то этот угол является прямым.

Хорда и центральный угол[править | править вики-текст]

  • Если хорды стягивают равные центральные углы, то эти хорды равны.
  • Если хорды равны, то эти хорды стягивают равные центральные углы.
  • Большая хорда стягивает больший центральный угол, меньшая хорда стягивает меньший центральный угол.
  • Больший центральный угол стягивается большей хордой, меньший центральный угол стягивается меньшей хордой.

Хорда и дуга[править | править вики-текст]

  • Если хорды стягивают равные дуги, то эти хорды равны.
  • Если хорды равны, то эти хорды стягивают равные дуги.
  • Из дуг, меньших полуокружности, большая дуга стягивается большей хордой, меньшая дуга стягивается меньшей хордой.
  • Из дуг, меньших полуокружности, большая хорда стягивает большую дугу, меньшая хорда стягивает меньшую дугу.
  • Из дуг, больших полуокружности, меньшая дуга стягивается большей хордой, большая дуга стягивается меньшей хордой.
  • Из дуг, больших полуокружности, большая хорда стягивает меньшую дугу, меньшая хорда стягивает большую дугу.
  • Хорда, стягивающая полуокружность, является диаметром.
  • Если хорды параллельны, то дуги, заключенные между этими хордами, равны. (неверно, легко проверить, если параллельные хорды лежат на разных расстояниях от центра, они разной длины и дуги разные)
  • Если дуги, заключенные между хордами, равны, то эти хорды параллельны. (и это неверно, хорды могут пересекаться, тем не менее и дуги и хорды могут быть равны)

Другие свойства[править | править вики-текст]

  • При пересечении двух хорд, получаются отрезки, произведение длин которых у одной хорды равно соответствующему произведению у другой (см. рисунок).
  • Если хорда делится по полам какой-либо точкой, то её длина самая маленькая, по сравнению с другими хордами, проведёнными из этой точки.
Если хорда равна хорде , то дуга равна дуге . Если хорда параллельна хорде , то дуга равна дуге .
.

Свойства хорд эллипса[править | править вики-текст]

Основные формулы[править | править вики-текст]

  • Длина хорды равна , где — радиус окружности, центральный угол, опирающийся на данную хорду (рис. 1).
  • Формула, напрямую выводящаяся из Теоремы Пифагора (см. рис. 2): , где — длина хорды, — радиус окружности, — расстояние от центра окружности до центральной точки хорды.
Рис. 1
Рис. 2

Связанные понятия[править | править вики-текст]

Ссылки[править | править вики-текст]