SN 1987A

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
SN 1987A
Supernova1987A.jpg
Остаток SN 1987A, снимок телескопа «Хаббл», опубликованный 19 мая 1994 года[1]
Наблюдательные данные
(Эпоха J2000,0)
Тип сверхновой II[2]
Галактика Большое Магелланово Облако
Созвездие Золотая Рыба
Прямое восхождение 05ч 35м 28,01с[3]
Склонение -69° 16′ 11,6″[3]
Дата открытия 23 февраля 1987
Расстояние 51,4 кпк (168000 световых лет)
Физические характеристики
Прародитель Sanduleak -69° 202
Класс прародителя голубой сверхгигант
Другие обозначения
HP99 854, WS90 1, INTREF 262, XMMU J053528.5-691614, SHP2000, LMC 264, AAVSO 0534-69
Wikidata-logo S.svg Информация в Викиданных ?

SN 1987A — сверхновая звезда, вспыхнувшая на окраине туманности Тарантул в Большом Магеллановом Облаке, карликовой галактике-спутнике Млечного Пути, приблизительно в 51,4 килопарсека (168 тысяч световых лет) от Земли[3]. Свет вспышки достиг Земли 23 февраля 1987 года[4]. Поскольку это была первая сверхновая, наблюдавшаяся в 1987 году, ей присвоили название SN 1987A.

В максимуме, достигнутом в мае 1987 года, она была видимой невооружённым глазом, пиковая видимая звёздная величина составила +3[5]:185. Это самая близкая вспышка сверхновой, наблюдавшаяся со времён изобретения телескопа[6].

Звезда-предшественник и вспышка[править | править код]

Сверхновая SN 1987A была открыта канадским астрономом Яном Шелтоном при помощи 25-см астрографа обсерватории Лас-Кампанас[5]:182, а первая фотография получена Мак Нотом 23 февраля в 10:35[7]:22. В течение первой послевспышечной декады светимость SN 1987A уменьшалась, а затем почти три месяца увеличивалась до максимума[8]. Звездой-предшественником SN 1987A был голубой сверхгигант Sanduleak −69° 202[9] с массой около 17 масс Солнца, который присутствует ещё в Капском фотографическом обозрении 1896—1900 гг.[5]:183 По радиоизлучению, зарегистрированному в первые две недели вспышки, радиоастрономами было установлено, что окружавший звезду газ по плотности и скорости соответствовал звёздному ветру голубого сверхгиганта. В то же время ультрафиолетовое излучение, зарегистрированное в мае 1987 года спутником IUE, по спектру соответствовало газу более высокой плотности и меньшей скорости, располагавшемуся дальше от звезды-предшественника. На основе анализа был сделан вывод, что этот газ соответствовал звёздному ветру красного сверхгиганта, дувшему за тысячи лет до вспышки, то есть что звезда-предшественник была в то время красным сверхгигантом, но затем превратилась в голубой сверхгигант[7]:29.

Вспышка потребовала пересмотра некоторых положений теории звёздной эволюции, поскольку считалось, что почти исключительно красные сверхгиганты и звёзды Вольфа — Райе могут вспыхивать как сверхновые[5]:184.

SN 1987A является сверхновой типа II, образующейся на конечном этапе из одиночных массивных звёзд, о чём свидетельствовали линии водорода уже в самых ранних спектрах этой сверхновой, так как именно водород и гелий являются основными элементами оболочки сверхновых II типа[7]:23-24.

Место в созвездии (красная точка)
Dorado constellation map ru lite.png
Locator Dot.gif

Нейтринная вспышка[править | править код]

В 2:52 по всемирному времени 23 февраля на советско-итальянском нейтринном детекторе LSD под горой Монблан было зарегистрировано 5 событий, вызванных нейтрино; подобные эффекты за счёт случайных совпадений фон способен создавать лишь раз в два года[5]:192. Через 5 часов, в 7:35 по всемирному времени 23 февраля (приблизительно за 3 часа до первого обнаружения сверхновой на фотопластинке) нейтринные обсерватории Kamiokande II, IMB и Баксан зарегистрировали вспышку нейтрино, длившуюся менее 13 секунд, причём по данным Kamiokande II было определено направление, с точностью около 20 градусов совпавшее с направлением на Большое Магелланово Облако[5]:191. Хотя за это время были зарегистрированы всего 24 нейтрино и антинейтрино, это существенно превысило фон. Зарегистрированные нейтринные события стали первым (и на 2017 год — единственным) случаем регистрации нейтрино от вспышки сверхновой. По современным представлениям, энергия нейтрино составляет около 99 % общей энергии, выделяемой при вспышке. Всего выделилось порядка 1058 нейтрино с общей энергией порядка 1046 джоулей[5]:189 (~100 Foe). Всплеск нейтрино, унёсший основную часть гравитационной энергии, свидетельствовал о коллапсе ядра звезды-предшественника и образовании на его месте нейтронной звезды[7]:26—27

Нейтрино и антинейтрино достигли Земли практически одновременно, что стало подтверждением общепринятой теории, по которой гравитационные силы действуют на материю и антиматерию одинаково.

Тепловой энергии разлетающегося вещества оболочки сверхновой недостаточно для объяснения длительности её вспышки, продолжавшейся несколько месяцев. На поздней стадии сверхновая светилась за счёт энергии радиоактивного распада никеля-56 (период полураспада 6 суток) с образованием кобальта-56 и последующего распада кобальта-56 (период полураспада 77,3 суток) с образованием стабильного железа-56[10]. Уносящие большую часть энергии распада гамма-кванты, рассеиваясь оболочкой, породили также жёсткое рентгеновское излучение сверхновой[7]:25-27.

10 августа 1987 года обсерваторией «Рентген» на модуле «Квант-1» было обнаружено жёсткое рентгеновское излучение SN 1987A[5]:195, получены широкополосные (~1—1000 кэВ) спектры излучения этой сверхновой[11]. Поток в диапазоне 20—300 кэВ от SN 1987A был также зарегистрирован спутником Ginga[5]:195. Гамма-излучение от сверхновой регистрировалось в августе-ноябре 1987 года спутником SMM[7]:26.

Световое эхо[править | править код]

В феврале 1988 года на Европейской южной обсерватории было обнаружено световое эхо сверхновой SN 1987A. Оно представляло собой два концентрических кольца вокруг места вспышки сверхновой, которые созданы рассеявшимся на газо-пылевых облаках светом, испущенным сверхновой во время вспышки[7]:29.

В исследовании, опубликованном в июне 2015 года, используя изображения с космического телескопа Хаббл и Very Large Telescope, сделанных в период с 1994 по 2014 год, показывается, что выбросы сгустков материи, составляющих кольца, исчезают. Прогнозируется, что кольца исчезнут в период между 2020 и 2030 годами[12].

Остаток SN 1987A, наложение снимков в разных диапазонах спектра, 6 января 2014 года. Данные ALMA (радиодиапазон, красный цвет) показывают вновь образовавшуюся пыль в центре остатка. Данные телескопов «Хаббл» (видимый диапазон, зелёный цвет) и «Чандра» (рентгеновский диапазон, синий цвет) показывают распространение ударной волны

Остаток сверхновой[править | править код]

Остаток SN 1987A является объектом пристального изучения. Особенностью сверхновой являются открытые в 1994 два симметрично расположенных неярких кольца, образовавшихся при слиянии двух звёзд[13][14].

Около 2001 года разлетающееся со скоростью, превышающей 7000 км/с, вещество, образовавшееся в результате взрыва, достигло внутреннего кольца. Это стало причиной нагревания последнего и генерации рентгеновского излучения, поток которого от кольца увеличился в три раза с 2001 по 2009 год. Часть рентгеновского излучения, поглощаемая близким к центру плотным веществом ответственна за сравнимое увеличение потока от остатка в видимом диапазоне за период с 2001 по 2009 гг. Это увеличение яркости остатка повернуло вспять процесс, наблюдавшийся до 2001 года, когда поток в видимом диапазоне уменьшался из-за распада изотопа титан-44[15].

Астрономы предсказывали, что по мере остывания газа после взрыва, атомы кислорода, углерода и кремния в холодных центральных частях остатка будут связываться, образуя большие количества молекул и пыли. Однако наблюдения SN 1987A с помощью инфракрасных телескопов в течение первых 500 дней после взрыва выявили лишь малые количества горячей пыли. 6 января 2014 года появилось сообщение об обнаружении в рамках проекта ALMA намного больших количеств холодной пыли, которые ярко светились в миллиметровом и субмиллиметровом диапазонах. Астрономы оценили, что на тот момент остаток сверхновой содержал вновь образовавшуюся пыль массой в четверть массы Солнца, и что почти весь углерод, выделившийся в результате взрыва, вошёл в состав пыли; они также нашли значительные количества диоксида углерода и моноксида кремния[16][17].

Ни нейтронная звезда, ни чёрная дыра, которые, по некоторым моделям, должны находиться на месте вспышки, пока не обнаружены.

Примечания[править | править код]

  1. Hubble Finds Mysterious Ring Structure around Supernova 1987a (англ.), HubbleSite (19 May 1994). Архивировано 27 апреля 2015 года. Проверено 27 апреля 2015.
  2. Lyman, J. D.; Bersier, D.; James, P. A. (2013). “Bolometric corrections for optical light curves of core-collapse supernovae”. Monthly Notices of the Royal Astronomical Society. 437 (4): 3848. arXiv:1311.1946. Bibcode:2014MNRAS.437.3848L. DOI:10.1093/mnras/stt2187.
  3. 1 2 3 SN1987A in the Large Magellanic Cloud. Hubble Heritage Project. Проверено 25 июля 2006.
  4. “Astrometry of SN 1987A and Sanduleak-69 202”. Bibcode:1987A&A...177L...1W.
  5. 1 2 3 4 5 6 7 8 9 Ефремов Ю. Н., Шакура Н. И. Сверхновая 1987 A в Большом Магеллановом Облаке // Астрономический календарь на 1989 год : Справочное издание. — М.: Наука, 1988. — С. 181—195. — ISSN 0132-4063.
  6. Более близкая сверхновая G1.9+0.3, открытая в 1985 году по её остатку и, по подсчётам учёных, вспыхнувшая около 1868 года, в то время не наблюдалась.
  7. 1 2 3 4 5 6 7 Чугай Н. Н. Сверхновая в Большом Магеллановом Облаке // Земля и Вселенная. — М.: Наука, 1989. — № 2. — С. 22-30.
  8. Мустель Э. Р., Чугай Н. Н. Сверхновые, какими мы их видим // Наука и человечество. — М.: Знание, 1988.
  9. Sk −69° 202 в SIMBAD
  10. Астрофизический модуль «Квант» // Наука и человечество. — М.: Знание, 1989. — С. 299—301.
  11. Discovery of hard X-ray emission from supernova 1987A [1] с теоретическими предсказаниями спектра излучения сверхновой [2]
  12. Supernova prized by astronomers begins to fade from view. New Scientist. Проверено 13 июня 2015. Архивировано 13 июня 2015 года.
  13. [astro-ph/0703317] The Triple-Ring Nebula around SN1987A: Fingerprint of a binary merger
  14. Элементы — новости науки: Объяснено происхождение колец сверхновой 1987А
  15. Larsson J; et al. (2011). “X-ray illumination of the ejecta of supernova 1987A”. Nature. 474 (7352): 484—486. DOI:10.1038/nature10090.
  16. Supernova’s Super Dust Factory Imaged with ALMA (англ.), National Radio Astronomy Observatory (6 January 2014). Архивировано 27 апреля 2015 года. Проверено 27 апреля 2015.
  17. Indebetouw R; et al. (2014). “Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA”. The Astrophysical Journal Letters. 782 (1). arXiv:1312.4086. DOI:10.1088/2041-8205/782/1/L2.

Ссылки[править | править код]