Целая часть
В математике, целая часть вещественного числа — округление до ближайшего целого в меньшую сторону. Целая часть числа также называется антье (фр. entier), или пол (англ. floor). Наряду с полом существует парная функция — потолок (англ. ceiling) — округление до ближайшего целого в большую сторону.
Обозначения и примеры
[править | править код]Впервые квадратные скобки () для обозначения целой части числа использовал Гаусс в 1808 году в своём доказательстве закона квадратичной взаимности[1]. Это обозначение считалось стандартным[2], пока Кеннет Айверсон в своей книге «A Programming Language», опубликованной в 1962 году, не предложил[3][4][5] округление числа до ближайшего целого в меньшую и большую стороны называть «пол» и «потолок» и обозначать и соответственно.
В современной математике используются оба обозначения[6], и , однако всё более и более преимущественно применяют терминологию и обозначения Айверсона: одна из причин состоит в том, что для отрицательных чисел понятие «целая часть числа» уже является неоднозначным[5]. Например, целая часть числа 2,7 равна 2, но на то, как определить целую часть числа −2,7, уже возможны две точки зрения: по определению, данному в этой статье, , однако в некоторых калькуляторах функция целой части INT для отрицательных чисел определяется как INT(–x) = –INT(x), так что INT(–2,7) = −2. Терминология Айверсона лишена этих недостатков:
Определения
[править | править код]Функция «пол» определяется как наибольшее целое, меньшее или равное :
Функция «потолок» — это наименьшее целое, большее или равное :
Эти определения эквивалентны следующим неравенствам (где n — целое число):[7]
Свойства
[править | править код]В формулах, записанных ниже, буквами и обозначены вещественные числа, а буквами и — целые.
Пол и потолок как функции вещественной переменной
[править | править код]Функции пол и потолок отображают множество вещественных чисел в множество целых чисел:
Пол и потолок — кусочно-постоянные функции.
Функции пол и потолок разрывны: во всех целочисленных точках терпят разрывы первого рода со скачком, равным единице.
При этом функция пол является:
Функция потолок является:
Связь функций пол и потолок
[править | править код]Для произвольного числа верно неравенство[8]
Для целого пол и потолок совпадают:
Если — не целое, то значение функции потолок на единицу больше значения функции пол:
Функции пол и потолок являются отражениями друг друга от обеих осей:
Пол/потолок: неравенства
[править | править код]Любое неравенство между вещественным и целым числами равносильно неравенству с полом и потолком между целыми числами [7]:
Два верхних неравенства являются непосредственными следствиями определений пола и потолка, а два нижние — обращение верхних от противного.
Функции пол/потолок являются монотонно возрастающими функциями:
Пол/потолок: сложение
[править | править код]Целочисленное слагаемое можно вносить/выносить за скобки пола/потолка [9]:
Предыдущие равенства, вообще говоря, не выполняются, если оба слагаемых — вещественные числа. Однако и в этом случае справедливы неравенства:
Пол/потолок под знаком функции
[править | править код]Имеет место следующее предложение:[10]
Пусть — непрерывная монотонно возрастающая функция, определенная на некотором промежутке, обладающая свойством:
Тогда
всякий раз, когда определены .
В частности,
если и — целые числа, и .
Пол/потолок: суммы
[править | править код]Если — целые числа, , то [11]
Вообще, если — произвольное вещественное число, а — целое положительное, то
Имеет место более общее соотношение [12]:
Так как правая часть этого равенства симметрична относительно и , то справедлив следующий закон взаимности:
Разложимость в ряд
[править | править код]Тривиальным образом функция антье раскладывается в ряд с помощью функции Хевисайда:
где каждое слагаемое ряда создаёт характерные «ступеньки» функции. Этот ряд сходится абсолютно, однако ошибочное преобразование его слагаемых может привести к «упрощённому» ряду
который расходится.
Применение
[править | править код]Целочисленные функции пол/потолок находят широкое применение в дискретной математике и теории чисел. Ниже приведены некоторые примеры использования этих функций.
Количество цифр в записи числа
[править | править код]Количество цифр в записи целого положительного числа в позиционной системе счисления с основанием b равно [13]
Округление
[править | править код]Ближайшее к целое число может быть определено по формуле
Бинарная операция mod
[править | править код]Операция «остаток по модулю», обозначаемая , может быть определена с помощью функции пола следующим образом. Если — произвольные вещественные числа, и , то неполное частное от деления на равно
- ,
а остаток
Дробная часть
[править | править код]Дробная часть вещественного числа по определению равна
Количество целых точек промежутка
[править | править код]Требуется найти количество целых точек в замкнутом промежутке с концами и , то есть количество целых чисел , удовлетворяющий неравенству
В силу свойств пол/потолка, это неравенство равносильно
- .
Это есть число точек в замкнутом промежутке с концами и , равное .
Аналогично можно подсчитать количество целых точек в других типах промежутков. Сводка результатов приведена ниже [14].
(Через обозначена мощность множества ).
Первые три результата справедливы при всех , а четвёртый — только при .
Теорема Рэлея о спектре
[править | править код]Пусть и — положительные иррациональные числа, связанные соотношением [15]
Тогда в ряду чисел
каждое натуральное встречается в точности один раз. Иными словами, последовательности
- и ,
называемые последовательностями Битти, образуют разбиение натурального ряда.[16]
В информатике
[править | править код]В языках программирования
[править | править код]Во многих языках программирования существуют встроенные функции пола/потолка floor(), ceil().
В системах вёрстки
[править | править код]В TeX (и LaTeX) для символов пола/потолка , , , существуют специальные команды: \lfloor, \rfloor, \lceil, \rceil. Поскольку wiki использует LaTeX для набора математических формул, то и в данной статье использованы именно эти команды.
Примечания
[править | править код]- ↑ Lemmermeyer, pp. 10, 23.
- ↑ Обозначение Гаусса использовали Cassels, Hardy & Wright и Ribenboim. Graham, Knuth & Patashnik и Crandall & Pomerance использовали обозначение Айверсона.
- ↑ Iverson, p. 12.
- ↑ Higham, p. 25.
- ↑ 1 2 Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — С. 88.
- ↑ Weisstein, Eric W. Floor Function (англ.) на сайте Wolfram MathWorld.
- ↑ 1 2 Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — С. 90.
- ↑ Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — С. 89.
- ↑ Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — С. 90-91.
- ↑ Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — С. 93.
- ↑ Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — С. 108.
- ↑ Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — С. 112-117.
- ↑ Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — С. 91.
- ↑ Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — С. 95-96.
- ↑ Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — С. 99-100.
- ↑ А. Баабабов. «Пентиум» хорошо, а ум лучше // Квант. — 1999. — № 4. — С. 36-38. Архивировано 22 июля 2014 года.
См. также
[править | править код]Литература
[править | править код]- Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — М.: «Мир», 1998. — 703 с. — ISBN 5-03-001793-3.
- М. К. Потапов, В. В. Александров, П. И. Пасиченко. Алгебра и начала анализа. — АО Столетие, 1996.