Взлёт

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Взлёт — процесс перехода летательного аппарата или летающего представителя фауны (насекомого, птицы, рукокрылого) в состояние полёта. Взлёт возможен только в том случае, если подъёмная сила больше веса взлетающего объекта.

Взлёт летательных аппаратов[править | править вики-текст]

Взлёт аэродинамических летательных аппаратов[править | править вики-текст]

Взлёт самолёта[править | править вики-текст]

Airbus A320-200 взлетает в аэропорту Лутон, Англия

По сравнению с другими типами летательных аппаратов самолёт имеет самую продолжительную по времени и самую сложную по организации управления фазу взлёта. Взлёт начинается с момента начала движения по взлётно-посадочной полосе (ВПП) для разбега и заканчивается на высоте перехода.

Взлёт считается одним из самых сложных и опасных этапов полёта: во время взлёта могут отказать двигатели, работающие в условиях максимальной тепловой и механической нагруженности, самолёт (относительно других фаз полёта) максимально заправлен топливом, а высота полёта ещё мала. Самая большая катастрофа в истории авиации произошла именно на взлёте.

Конкретные правила взлёта для каждого типа воздушного судна описаны в руководстве по лётной эксплуатации самолёта. Коррективы могут вносить схемы выхода, особые условия (например, правила снижения шума), однако существуют некоторые общие правила.

Для разгона двигатели обычно устанавливают на взлётный режим. Это чрезвычайный режим, продолжительность полёта на нём ограничена несколькими минутами. Иногда (если позволяет длина полосы) при взлёте допустим номинальный режим.[1] Чаще всего при взлёте двигатели устанавливают на номинальный режим именно с целью снижения уровня шума, если аэропорт расположен в непосредственной близости от населённого пункта и маршрут полёта пролегает над жилыми кварталами.

Каждое воздушное судно перед полётом обязано пройти предполётную подготовку. Самолёт готовят к тем условиям, в которых предстоит взлетать. Например, если прогнозируется обледенение, самолёт обрабатывают противообледенительной жидкостью.

Перед каждым взлётом штурман (если имеется) или второй пилот рассчитывает скорость принятия решения (V1), до которой взлёт может быть безопасно прекращён, и самолёт остановится в пределах взлётно-посадочной полосы (ВПП). Расчёт V1 учитывает множество факторов, таких, как: длина ВПП, её состояние, покрытие, уклон, высота аэродрома над уровнем моря, метеоусловия (ветер, температура), загрузка самолёта, центровка, и другие. В случае, если отказ произошёл на скорости, большей V1, единственно верным решением будет продолжить взлёт и затем произвести посадку. Большинство типов самолётов гражданской авиации с несколькими двигателями сконструированы так, что, даже если на взлёте откажет один из двигателей, мощности остальных хватит на то, чтобы, разогнав машину до безопасной[2] скорости, подняться на минимальную высоту, с которой можно зайти на глиссаду и посадить самолёт.

Перед взлётом пилот выпускает закрылки и предкрылки в расчётное положение, чтобы увеличить подъёмную силу, и в то же время минимально препятствовать разгону самолёта. Это уменьшает длину разбега и позволяет оторваться от полосы на меньшей скорости. Затем, дождавшись разрешения авиадиспетчера, пилот устанавливает двигателям взлётный режим и отпускает тормоза колёс, и самолёт начинает разбег. Во время разбега главная задача пилота — держать машину строго вдоль оси ВПП, не допуская поперечного смещения самолёта. Особенно это важно при боковом ветре. До определённой скорости аэродинамический руль направления неэффективен и руление происходит путем притормаживания одной из основных стоек шасси. После достижения скорости, на которой руль направления становится эффективен, управление производится рулём направления. Передняя стойка шасси на разбеге как правило заблокирована для поворота, или переведена в режим малых углов (повороты воздушного судна с её помощью осуществляются при рулении на малой скорости на аэродроме). Как только взлётная скорость достигнута, пилот плавно отклоняет штурвал на себя, увеличивая угол атаки. Нос самолёта приподнимается («подъём»),[3] а затем и весь самолёт отрывается от земли.

Сразу же после отрыва для уменьшения лобового сопротивления (на высоте не ниже 5 метров) убираются шасси (если убираемые), и (при наличии) выпускные фары, затем производится постепенная уборка механизации крыла. Постепенная уборка обусловлена необходимостью медленного уменьшения подъёмной силы крыла. При быстром убирании механизации самолёт может дать опасную просадку. Зимой, когда самолёт влетает в относительно тёплые слои воздуха, где эффективность двигателей падает, просадка может быть особенно глубокой. Примерно по такому сценарию произошла катастрофа самолёта «Руслан» в Иркутске. Порядок уборки шасси и механизации крыла строго регламентирован в РЛЭ для каждого типа самолёта.

Как только достигнута высота перехода, пилот устанавливает стандартное давление 760 мм рт. ст. Аэропорты расположены на разных высотах, а управление воздушным транспортом осуществляется в единой системе, поэтому на высоте перехода пилот обязан перейти с системы отсчёта высот от уровня ВПП (или уровня моря) на эшелон (условную высоту). Также на высоте перехода двигателям устанавливают номинальный режим. После этого этап взлёта считается завершённым, и начинается следующий этап полёта: набор высоты.

Взлёт самолёта бывает нескольких видов:

  • Взлёт с тормозов. Двигатели выводятся на режим максимальной тяги, на которой самолёт удерживается на тормозах; после того, как двигатели вышли на установленный режим, тормоза отпускаются, и начинается разбег.
  • Взлёт с кратковременной остановкой на ВПП. Экипаж не дожидается, пока двигатели выйдут на требуемый режим, а сразу начинает разбег (двигатели должны достичь нужной мощности до определённой скорости). При этом длина разбега увеличивается.
  • Взлёт без остановки (англ. rolling start), «с ходу». Двигатели выходят на нужный режим в процессе выруливания с рулёжной дорожки на ВПП, применяется при высокой интенсивности полётов на аэродроме.
  • Взлёт с применением специальных средств. Чаще всего это взлёт с палубы авианесущего корабля в условиях ограниченной длины ВПП. В таких случаях короткий разбег компенсируется трамплинами, катапультными устройствами, дополнительными твердотопливными ракетными двигателями, автоматическими удерживателями колёс шасси и т. п.
  • Взлёт самолёта с вертикальным или укороченным взлётом. Например, Як-38.
  • Взлёт с поверхности воды.

Взлёт вертолёта и СВВП[править | править вики-текст]

Фаза взлета для вертолёта относительна коротка и начинается с перевода двигателей на взлётный режим и заканчивается переходом в режим горизонтального полёта. Взлёт вертолёта может осуществляться вертикально или, если вертолёт оборудован колёсами и взлетает с ВПП, с коротким разбегом для экономии топлива.

На высокогорных взлётных площадках, где воздух разрежен, применяется взлёт с разбегом.

Взлёт крылатой ракеты[править | править вики-текст]

Взлёт аэростатических летательных аппаратов[править | править вики-текст]

  • Взлёт газонаполненного аэростата — обычно такие аэростаты заполняют лёгким газом задолго до взлёта и удерживают на земле за счет балласта и швартовки. Для взлёта необходимо отшвартовать аппарат и сбросить часть балласта.
  • Взлёт монгольфьера — монгольфьер создаёт подъёмную силу только при наполнении горячим воздухом. Поэтому монгольфьеры обычно не швартуют. Для взлёта монгольфьера в его оболочку подают горячий воздух (обычной от газовой горелки), после чего аппарат плавно взлетает.

Взлёт ракетодинамических летательных аппаратов[править | править вики-текст]

Взлётом (или стартом) ракеты называется фаза от включения двигателя до выхода двигателя на режим расчётной тяги или покидания ракетой стартового сооружения (в зависимости от того, что наступит позже). Для твердотопливных ракет взлёт длится доли секунды.

Взлёт представителей фауны[править | править вики-текст]

Взлёт насекомых[править | править вики-текст]

Взлёт золотистой бронзовки (Cetonia aurata)

Взлёт рукокрылых[править | править вики-текст]

Вопреки распространённому мнению, рукокрылые могут взлетать не только с высоко расположенных пунктов (потолка пещеры, ствола дерева), но и с ровной земли и даже с водной поверхности. В этом случае взлёт начинается с прыжка вверх, происходящего в результате сильного порывистого движения передних конечностей[источник не указан 1343 дня].

Взлёт птиц[править | править вики-текст]

Стратегия взлёта может существенным образом отличаться, прежде всего в зависимости от размера птицы. Птицы небольшого размера требуют относительно небольшой или даже нулевой начальной скорости, которая генерируется за счёт прыжка.

В частности, такое поведение было продемонстрировано на примере скворца и перепела, которые способны генерировать 80—90 % скорости полёта за счёт начального прыжка[4], достигая ускорения до 48 м/c².

При этом скворцы часто используют энергию ветви, на которой сидят, хотя и не способны регулировать силу прыжка в зависимости от её толщины[5].

Другие небольшие птицы, такие как колибри, чьи ноги слишком малы и тонки для прыжка, начинают махать крыльями ещё на земле, достигая подъёмной силы до 1,6 веса птицы[6].

Крупные птицы не способны взлетать с места, и им требуется начальная скорость для полёта. Чаще всего эта скорость достигается за счёт взлёта против ветра. В дополнение, часто птицы вынуждены делать пробежку по поверхности земли или воды.

Некоторые большие птицы, такие как орлы, используют скалы, верхние ветви деревьев или другие возвышения для получения скорости за счёт падения, морские птицы часто способны достичь подобного эффекта за счёт взлёта с гребня волны[7].

Галерея[править | править вики-текст]

См. также[править | править вики-текст]

Литература[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Режим полной нефорсированной тяги двигателей
  2. Безопасная скорость — минимальная скорость, на которой эффективности рулей хватает для управления воздушным судном в случае отказа одного из  двигателей.
  3. В случае самолёта с носовой стойкой шасси.
  4. Earls KD (2000). «Kinematics and mechanics of ground take-off in the starling Sturnis vulgaris and the quail Coturnix coturnix». J Exp Biol. 203 (4): 725-39. PMID 10648214.
  5. Bonser R.H.C., Norman A.P., Rayner J.M.V. (1999). «Does substrate quality influence take-off decisions in common starlings?». Functional ecology 13: 435—439.
  6. Tobalske B.W., Altshuler D.L., Powers D.L. (2004). «Take-off mechanisms in hummingbirds»: 1345-1352.
  7. Taking Off Bird Flight. Paul and Bernice Noll's Bird Choices. Архивировано из первоисточника 31 января 2012.