Парниковые газы

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Спектр пропускания атмосферы Земли в оптической и инфракрасной областях. Отмечены полосы поглощения кислорода (ультрафиолет), водяного пара, углекислого газа и озона (инфракрасная область).

Парниковые газы — газы с высокой прозрачностью в видимом диапазоне и с высоким поглощением в дальнем инфракрасном диапазоне. Присутствие таких газов в атмосферах планет приводит к появлению парникового эффекта.

Основным парниковым газом в атмосферах Венеры и Марса является диоксид углерода, в атмосфере Земли - водяной пар.

Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар, углекислый газ, метан и озон[1]

Газ
 
Формула
 
Вклад
(%)
Водяной пар H2O 36 – 72 %  
Диоксид углерода CO2 9 – 26 %
Метан CH4 4 – 9 %  
Озон O3 3 – 7 %  

Потенциально в парниковый эффект могут вносить вклад и антропогенные галогенированные углеводороды и оксиды азота, однако ввиду низких концентраций в атмосфере оценка их вклада проблематична.

Водяной пар[править | править исходный текст]

Водяной пар является основным естественным парниковым газом, который ответственен более чем за 60 % эффекта.

В то же время, увеличение температуры Земли, вызванное другими факторами, увеличивает испарение и общую концентрацию водяного пара в атмосфере при практически постоянной относительной влажности, что, в свою очередь, повышает парниковый эффект. Таким образом, возникает некоторая положительная обратная связь. С другой стороны, повышение влажности способствует развитию облачного покрова, а облака в атмосфере отражают прямой солнечный свет, тем самым увеличивая альбедо Земли. Повышенное альбедо приводит к антипарниковому эффекту, несколько уменьшая общее количество поступающего солнечного излучения и дневной прогрев атмосферы.

Углекислый газ[править | править исходный текст]

Источниками углекислого газа в атмосфере Земли являются вулканические выбросы, жизнедеятельность биосферы, деятельность человека. Антропогенными источниками являются: сжигание ископаемого топлива; сжигание биомассы, включая сведение лесов; некоторые промышленные процессы приводят к значительному выделению углекислоты (например, производство цемента). Основными потребителями углекислого газа являются растения, однако, в состоянии равновесия, большинство биоценозов за счет гниения биомассы производит приблизительно столько же углекислого газа, сколько и поглощает. Антропогенная эмиссия увеличивает концентрацию углекислого газа в атмосфере, что, предположительно, является главным фактором изменения климата. Углекислый газ является "долго живущим" в атмосфере. Согласно современным научным представлениям, возможность дальнейшего накапливания СО2 в атмосфере ограничена риском неприемлемых последствий для биосферы и человеческой цивилизации, в связи с чем его будущий эмиссионный бюджет является конечной величиной.

Метан[править | править исходный текст]

Парниковая активность метана примерно в 21 раз выше, чем у углекислого газа. Время жизни метана в атмосфере составляет примерно 12 лет. Сравнительно короткое время жизни в сочетании с большим парниковым потенциалом делает его кандидатом для смягчения последствий глобального потепления в ближайшей перспективе.

Основными антропогенными источниками метана являются пищеварительная ферментация у скота, рисоводство, горение биомассы (в т. ч. сведение лесов). Как показали недавние исследования, быстрый рост концентрации метана в атмосфере происходил в первом тысячелетии нашей эры (предположительно в результате расширения сельхозпроизводства и скотоводства и выжигания лесов). В период с 1000 по 1700 годы концентрация метана упала на 40 %, но снова стала расти в последние столетия (предположительно в результате увеличения пахотных земель, пастбищ и выжигания лесов, использования древесины для отопления, увеличения поголовья домашнего скота, количества нечистот, выращивания риса). Некоторый вклад в поступление метана дают утечки при разработке месторождений каменного угля и природного газа, а также эмиссия метана в составе биогаза, образующегося на полигонах захоронения отходов.

Анализ пузырьков воздуха во льдах свидетельствует о том, что сейчас в атмосфере Земли больше метана, чем в любое время за последние 400000 лет. С 1750 года средняя глобальная атмосферная концентрация метана возросла на 150 процентов от приблизительно 700 до 1745 частей на миллиард по объему (ppbv) в 1998 году. За последнее десятилетие, хотя концентрация метана продолжала расти, скорость роста замедлилась. В конце 1970-х годов темпы роста составили около 20 ppbv в год. В 1980-х годов рост замедлился до 9-13 ppbv в год. В период с 1990 по 1998 наблюдался рост между 0 и 13 ppbv в год. Недавние исследования (Dlugokencky и др.) показывают устойчивую концентрацию 1751 ppbv между 1999 и 2002 гг.[2]

Метан удаляется из атмосферы посредством нескольких процессов. Баланс между выбросами метана и процессами его удаления в конечном итоге определяет атмосферные концентрации и время пребывания метана в атмосфере. Доминирующим является окисление с помощью химической реакции с гидроксильными радикалами (ОН). Метан реагирует с ОН в тропосфере, производя СН3 и воду. Стратосферное окисление также играет некоторую (незначительную) роль в устранении метана из атмосферы. На эти две реакции с ОН приходится около 90% удаления метана из атмосферы. Кроме реакции с ОН известно еще два процесса: микробиологическое поглощение метана в почвах и реакция метана с атомами хлора (Cl) на поверхности моря. Вклад этих процессов 7% и менее 2% соответственно.[3]

Озон[править | править исходный текст]

Озон необходим для жизни, поскольку защищает Землю от жёсткого ультрафиолетового излучения Солнца.

Однако ученые различают стратосферный и тропосферный озон. Первый (так называемый озоновый слой) является постоянной и основной защитой от вредного излучения. Второй же считается вредным, так как может переноситься к поверхности Земли и ввиду своей токсичности вредить живым существам. Кроме того, повышение содержания именно тропосферного озона внесло вклад в рост парникового эффекта атмосферы. По наиболее широко распространенным научным оценкам, вклад озона составляет около 25% от вклада СО2[4]

Большая часть тропосферного озона образуется, когда оксиды азота (NOx), окись углерода (СО) и летучие органические соединения вступают в химические реакции в присутствии кислорода, водяных паров и солнечного света. Транспорт, промышленные выбросы, а также некоторые химические растворители являются основными источниками этих веществ в атмосфере. Метан, атмосферная концентрация которого значительно возросла в течение последнего столетия, также способствует образованию озона. Время жизни тропосферного озона составляет примерно 22 дня, основными механизмами его удаления являются связывание в почве, разложение под действием ультрафиолетовых лучей и реакции с радикалами OH и HO2.[5]

Концентрации тропосферного озона отличаются высоким уровнем изменчивости и неравномерности в географическом распределении. Существует система мониторинга уровня тропосферного озона в США[6] и Европе[7], основанная на спутниках и наземном наблюдении. Поскольку для образования озона требуется солнечный свет, высокие уровни озона наблюдаются обычно в периоды жаркой и солнечной погоды. Нынешняя средняя концентрация тропосферного озона в Европе в три раза выше, чем в доиндустриальную эпоху[источник не указан 977 дней].

Увеличение концентрации озона вблизи поверхности имеет сильное негативное воздействие на растительность, повреждая листья и угнетая их фотосинтетический потенциал. В результате исторического процесса увеличения концентрации приземного озона, вероятно, была подавлена способность поверхности суши поглощать СО2 и поэтому увеличились темпы роста СО2 в XX веке. Ученые (Sitch и др. 2007) полагают, что это косвенное воздействие на климат увеличило почти вдвое тот вклад, который концентрация приземного озона внесла в изменения климата. Снижение загрязнения нижней тропосферы озоном может компенсировать 1-2 десятилетия эмиссии СО2, при этом экономические издержки будут относительно невелики (Wallack и Ramanathan, 2009).[8]

Оксиды азота[править | править исходный текст]

Парниковая активность закиси азота в 298 раз выше, чем у углекислого газа. Кроме того, оксиды азота могут влиять на озоновый слой.

Фреоны[править | править исходный текст]

Парниковая активность фреонов в 1300-8500 раз выше, чем у углекислого газа. Основным источником фреона являются холодильные установки и аэрозоли.

См. также[править | править исходный текст]

Примечания[править | править исходный текст]

Ссылки[править | править исходный текст]