Реляционная алгебра

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Реляционная алгебра — замкнутая система операций над отношениями в реляционной модели данных. Операции реляционной алгебры также называют реляционными операциями.

Первоначальный набор из 8 операций был предложен Э. Коддом в 1970-е годы и включал как операции, которые до сих пор используются (проекция, соединение и т.д.), так и операции, которые не вошли в употребление (например, деление отношений).

В процессе развития реляционной теории и практики было предложено несколько новых реляционных операций, например полусоединение (SEMI-JOIN) и полуразность, или анти-полусоединение (ANTI-SEMI-JOIN)[1][2], CROSS APPLY и OUTER APPLY, транзитивное замыкание (TCLOSE) и др.

Поскольку многие операции выразимы друг через друга, в составе реляционной алгебры можно выделить несколько вариантов базиса (набора операций, через который выразимы все остальные). Наиболее известный и строго определённый базис (алгебра А) предложен Кристофером Дейтом и Хью Дарвеном[3].

Реляционная алгебра и реляционное исчисление эквивалентны по своей выразительной силе[4]. Существуют правила преобразования запросов между ними.

Замкнутость реляционной алгебры[править | править вики-текст]

Реляционная алгебра представляет собой набор таких операций над отношениями, что результат каждой из операций также является отношением. Это свойство алгебры называется замкнутостью.

Операции над одним отношением называются унарными, над двумя отношениями — бинарными, над тремя — тернарными (таковые практически неизвестны).

Пример унарной операции — проекция, пример бинарной операции — объединение.

N-арную реляционную операцию f можно представить функцией, возвращающей отношение и имеющей n отношений в качестве аргументов:

R = f(R_1, R_2,\dots, R_n)

Поскольку реляционная алгебра является замкнутой, в качестве операндов в реляционные операции можно подставлять другие выражения реляционной алгебры (подходящие по типу):

R = f(f_1(R_{11},R_{12},\dots),f_2(R_{21},R_{22},\dots),\dots)

В реляционных выражениях можно использовать вложенные выражения сколь угодно сложной структуры.

Ограничения на операции[править | править вики-текст]

Некоторые реляционные операции, в частности, операции объединения, пересечения и вычитания, требуют, чтобы отношения имели совпадающие (одинаковые) заголовки (схемы). Это означает, что совпадают количество атрибутов, названия атрибутов и тип (домен) одноимённых атрибутов.

Некоторые отношения формально не являются совместимыми из-за различия в названиях атрибутов, но становятся таковыми после применения операции переименования атрибутов.

Операции реляционной алгебры[править | править вики-текст]

Далее перечислены некоторые операции реляционной алгебры, которые представляют либо исторический, либо практический интерес. Все операции перечислить невозможно, поскольку любая операция, удовлетворяющая определению реляционной, является частью реляционной алгебры.

Переименование[править | править вики-текст]

В результате применения операции переименования получаем новое отношение, с измененными именами атрибутов.
Синтаксис:

R RENAME Atr1, Atr2, … AS NewAtr1, NewAtr2,

где

R — отношение
Atr1, Atr2, … — исходные имена атрибутов
NewAtr1, NewAtr2, … — новые имена атрибутов

Объединение[править | править вики-текст]

Отношение с тем же заголовком, что и у совместимых по типу отношений A и B, и телом, состоящим из кортежей, принадлежащих или A, или B, или обоим отношениям.
Синтаксис:

A UNION B

Пересечение[править | править вики-текст]

Отношение с тем же заголовком, что и у отношений A и B, и телом, состоящим из кортежей, принадлежащих одновременно обоим отношениям A и B.
Синтаксис:

A INTERSECT B

Вычитание[править | править вики-текст]

Отношение с тем же заголовком, что и у совместимых по типу отношений A и B, и телом, состоящим из кортежей, принадлежащих отношению A и не принадлежащих отношению B.
Синтаксис:

A MINUS B

Декартово произведение[править | править вики-текст]

Отношение (A1, A2, …, Am, B1, B2, …, Bm), заголовок которого является сцеплением заголовков отношений A(A1, A2, …, Am) и B(B1, B2, …, Bm), а тело состоит из кортежей, являющихся сцеплением кортежей отношений A и B:

(a1, a2, …, am, b1, b2, …, bm)

таких, что

(a1, a2, …, am)A,
(b1, b2, …, bm)B.

Синтаксис:

A TIMES B

Выборка (ограничение)[править | править вики-текст]

Отношение с тем же заголовком, что и у отношения A, и телом, состоящим из кортежей, значения атрибутов которых при подстановке в условие c дают значение ИСТИНА. c представляет собой логическое выражение, в которое могут входить атрибуты отношения A и/или скалярные выражения.
Синтаксис:

A WHERE c

Проекция[править | править вики-текст]

При выполнении проекции выделяется «вертикальная» вырезка отношения-операнда с естественным уничтожением потенциально возникающих кортежей-дубликатов.
Синтаксис:

A[X, Y, …, Z]

или

PROJECT A {x, y, …, z}

Соединение[править | править вики-текст]

Операция соединения отношений A и B по предикату P логически эквивалентна последовательному применению операций декартового произведения A и B и выборки по предикату P. Если в отношениях имеются атрибуты с одинаковыми наименованиями, то перед выполнением соединения такие атрибуты необходимо переименовать.

Синтаксис:

(A TIMES B) WHERE P

Деление[править | править вики-текст]

Отношение с заголовком (X1, X2, …, Xn) и телом, содержащим множество кортежей (x1, x2, …, xn), таких, что для всех кортежей (y1, y2, …, ym) ∈ B в отношении A(X1, X2, …, Xn, Y1, Y2, …, Ym) найдется кортеж (x1, x2, …, xn, y1, y2, …, ym).
Синтаксис:

A DIVIDEBY B

Примечания[править | править вики-текст]

  1. Introduction to Joins
  2. Дейт, Кристофер. SQL и реляционная теория. Как грамотно писать код на SQL. — Символ-Плюс, 2010
  3. К. Дейт, Хью Дарвен. Основы будущих систем баз данных. Третий манифест. М: Янус-К, 2004.
  4. Грей, 1989, с. 188

Литература[править | править вики-текст]

  • Грей П. Логика, алгебра и базы данных. — М.: Машиностроение, 1989. — С. 188-213. — 368 с.

Ссылки[править | править вики-текст]