Троичная логика

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Трои́чная ло́гика (трёхзначная логика) — один из видов многозначной логики, предложенный Яном Лукасевичем в 1920 году. Трёхзначная логика — исторически первая многозначная логика. Она является простейшим расширением двузначной логики.

Чёткую математическую троичную логику, в которой имеется три чётких значения (0,1,2), (-1,0,+1), (0,1/2,1) и т. п. часто путают с нечёткой троичной логикой, которая является частным случаем нечёткой логики c тремя значениями, одно, два или все три из которых нечёткие.

Перечень значений нечёткой трёхзначной логики с двумя чёткими и с одним нечётким значением помимо «истинно» и «ложно» включает также третье значение, которое нечётко и трактуется как «не определено» или «неизвестно».

Примерами значений нечёткой трёхзначной логики с одним чётким и с двумя нечёткими значениями являются: («меньше», «равно», «больше»), («уклон влево», «прямо», «уклон вправо») и другие.

Примерами значений нечёткой трёхзначной логики с тремя нечёткими значениями, к которым сводится очень большое количество практических народнохозяйственных задач, являются: («меньше», «равно, в допустимых пределах», «больше»), («уклон влево», «прямо, в допустимых пределах», «уклон вправо»), («холодно», «прохладно», «жарко») и другие.

Алгебраические свойства[править | править вики-текст]

Троичная логика, в отличие от двоичной, небулево кольцо и обладает собственным математическим аппаратом. Он состоит из системы аксиом, которые определяют над множеством {"1", «0», «1»} одноместные и двухместные операции, а также выводимые из них свойства.

Для конъюнкции и дизъюнкции в тройной логике сохраняются коммутативный (переместительный), ассоциативный (сочетательный) и дистрибутивный (распределительный) законы.

Несколько свойств образуются благодаря особенности отрицания Лукасевича:

  • \lnot \bar{1} = 1
  • \lnot (x \land \bar{1}) = \lnot x \lor 1

Однако из-за наличия третьего состояния некоторые законы двоичной логики оказываются неверными, для них сформулированы троичные аналоги. Так, вместо закона противоречия стали применять закон несовместности состояний, вместо закона исключённого третьего — закон полноты состояний (закон исключённого четвёртого), вместо неверного закона Блейка—Порецкого применяют трёхчленный закон Блейка—Порецкого.

Физическая реализация[править | править вики-текст]

При физической реализации троичным функциям в троичной логике соответствуют троичные логические элементы, в общем случае не обязательно электронные.

Схемы с 3-4-значной логикой дают возможность сократить количество используемых логических и запоминающих элементов, а также межэлементных соединений. Схемы трёхзначной логики легко реализуются на КМОП-технологии. Трёхзначная логика обладает большей выразительностью, чем двухзначная. Например, существует лишь 16 комбинаций входов-выходов двухвходового двоичного вентиля, тогда как у аналогичного троичного вентиля таких комбинаций 19683.[1]

На основе троичных элементов — троичной ферритодиодной ячейки разработки Николая Брусенцова — в 1959 году в вычислительном центре МГУ спроектирована малая ЭВМ «Сетунь», выпущена в 46 экземплярах.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

  • Васильев Н. И. Воображаемая логика. — М.: Наука, 1989.
  • Карпенко А. С. Многозначные логики // Логика и компьютер. Вып. №4. — М.: Наука, 1997.
  • Кэррол Льюис Символическая логика // Льюис Кэррол. История с узелками. — М.: Мир, 1973.
  • Лукасевич Я. Аристотелевская силлогистика с точки зрения современной формальной логики. — М.: Иностранная литература, 1959.
  • Слинин Я. А. Современная модальная логика. — Л.: Издательство Ленинградского университета, 1976.
  • Стяжкин Н. И. Формирование математической логики. — М.: Наука, 1967.
  • Гетманова А. Д. Учебник по логике. — М.: Владос, 1995. — С. 259—268. — 303 с. — ISBN 5-87065-009-7.
  • Толковый словарь по вычислительным системам / Под ред. В. Иллингуорта и др.. — М.: Машиностроение, 1990. — 560 с. — ISBN 5-217-00617-X.

Ссылки[править | править вики-текст]