Компактификация: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
→‎Примеры: убрал ошибку -- сфера негомеоморфна проективной плоскости
Строка 6: Строка 6:
<math>f:X \to Y</math> [[вложение]]
<math>f:X \to Y</math> [[вложение]]
такое, что <math>f(X)</math> плотно в <math>Y</math>.
такое, что <math>f(X)</math> плотно в <math>Y</math>.

== Примеры ==
* [[Проективная плоскость|Вещественная проективная плоскость]] является компактификацией [[Евклидова плоскость|Евклидовой плоскости]], для стандартного вложения.


== Одноточечная компактификация ==
== Одноточечная компактификация ==

Версия от 18:33, 15 декабря 2020

Компактификация — операция, которая преобразует топологические пространства в компактные.

Определение

Формально компактификация пространства определяется как пара , где компактно, вложение такое, что плотно в .

Одноточечная компактификация

Одноточечная компактификация (или компактификация Александрова) устроена следующим образом. Пусть и открытыми множествами в считаются все открытые множества , а также множества вида , где имеет замкнутое и компактное (в ) дополнение. берётся как естественное вложение в . тогда компактификация, причём хаусдорфово тогда и только тогда, когда хаусдорфово и локально компактно.

Примеры

  • с топологией, сконструированной как указано выше, является компактным пространством. Нетрудно доказать, что если два пространства гомеоморфны, то и соответствующие одноточечные компактификации гомеоморфны.
    • В частности, так как окружность на плоскости без одной точки гомеоморфна с (пример гомеоморфизма — стереографическая проекция), целая окружность гомеоморфна с .
    • Аналогично, гомеоморфно -мерной сфере.

Компактификация Стоуна — Чеха

На компактификациях некоторого фиксированного пространства можно ввести частичный порядок. Положим для двух компактификаций , , если существует непрерывное отображение такое, что . Максимальный (с точностью до гомеоморфизма) элемент в этом порядке называется компактификацией Стоуна — Чеха[1] и обозначается . Для того, чтобы у пространства существовала компактификация Стоуна — Чеха, удовлетворяющая аксиоме отделимости Хаусдорфа, необходимо и достаточно, чтобы удовлетворяло аксиоме отделимости , то есть было вполне регулярным.

Примечания

  1. Также «стоунчеховская компактификация» и «чехстоунова компактификация».