Тест Харке — Бера

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Тест Ха́рке—Бе́ра (англ. Jarque-Bera test) — это статистический тест, проверяющий ошибки наблюдений на нормальность посредством сверки их третьего момента (асимметрия) и четвёртого момента (эксцесс) с моментами нормального распределения, у которого , .

В тесте Харке—Бера проверяется нулевая гипотеза против гипотезы , где  — коэффициент асимметрии (Skewness),  — коэффициент эксцесса (Kurtosis)

Формулировка

[править | править код]

Тест выглядит следующим образом:

, где , ,  — остатки модели,  — количество наблюдений, , ML — обозначение метода максимального правдоподобия (Maximal Likelihood). Данная статистика имеет распределение хи-квадрат с двумя степенями свободы (), поскольку коэффициенты и асимптотически нормальны, следовательно, их квадраты при нормировке дадут две случайные величины, распределённые как . Чем ближе распределение ошибок к нормальному, тем меньше статистика Харке—Бера отличается от нуля. При достаточно большом значении статистики p-value будет мало, и тогда будет основание отвергнуть нулевую гипотезу (статистика попала в «хвост» распределения).

Свойства теста

[править | править код]

Тест Харке—Бера является асимптотическим тестом, то есть применим к большим выборкам. Если ошибки распределены нормально, то в соответствии с теоремой Гаусса—Маркова оценки метода наименьших квадратов будут лучшими (иметь наименьшую дисперсию в классе линейных несмещённых оценок), и коэффициенты регрессии будут также распределены асимптотически нормально.

Литература

[править | править код]
  • Damodar N. Gujarati. Basic Econometrics. — 4. — The McGraw-Hill Companies, 2004. — С. 1002. — ISBN 978-0071123433.