Интеграл Пуассона

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.

Задача Дирихле для уравнения Лапласа[править | править вики-текст]

Интеграл Пуассона для задачи Дирихле для уравнения Лапласа в шаре выглядит следующим образом.

Пусть для гармонической в шаре функции u(r, φ) поставлено условие равенства на границе функции u0: u(R, φ) = u0(φ), при этом функции принадлежат следующим классам гладкости: , где ∂D — граница шара D, а — его замыкание. Тогда решение такой задачи Дирихле представимо в виде интеграла Пуассона:

где ωn — площадь единичной сферы, а n — размерность пространства.

Вывод формулы в двумерном случае[править | править вики-текст]

Известно, что функция

является решением задачи Дирихле для уравнения Лапласа в круге. Преобразуем это выражение с учётом выражений для коэффициентов Фурье:

Последнюю сумму можно вычислить при 0≤r<R:

Таким образом, в преобразованном виде интеграл Пуассона для круга приобретает вид:

Также формула может быть получена методом конформных отображений. Действительная и мнимая часть голоморфной на области функции удовлетворяют на ней двумерному уравнению Лапласа. Известно, что при конформном отображении области плоскости на область плоскости уравнение Лапласа для функции переходит в уравнение . С помощью дробно-линейной функции легко получить отображение исходного круга радиуса на единичный круг, при котором произвольная точка переходит в центр. Такая функция имеет вид:

где выбирается так, чтобы граничные точки исходного круга перешли в точки , при этом , а произволен. Искомая функция перейдёт в функцию . Граничная функция перейдёт в . Тогда по теореме о среднем:

Из этого выражения можно получить явное выражение для решения задачи Дирихле в круге, если выразить через . Для граничных точек круга и круга формула дробно-линейного преобразования даёт

откуда

Производя замену переменной в интеграле, получим искомое выражение:

Это выражение эквивалентно вышеприведённому:

Задача Коши для уравнения теплопроводности[править | править вики-текст]

Однородное уравнение[править | править вики-текст]

Рассмотрим задачу Коши для однородного уравнения теплопроводности:

где начальная функция, непрерывная и ограниченная на всём пространстве, и искомая функция является непрерывной и ограниченной при и всех значениях аргумента .

Фундаментальным решением или ядром уравнения теплопроводности называется решение задачи Коши для однородного уравнения теплопроводности с начальным условием , где дельта-функция Дирака. Оно имеет вид:

где — стандартный скалярный квадрат вектора .

Интеграл Пуассона задает единственное непрерывное и ограниченное решение данной задачи Коши по следующей формуле[1]:

Неоднородное уравнение[править | править вики-текст]

Рассмотрим задачу Коши для неоднородного уравнения теплопроводности:


В этом случае интеграл Пуассона имеет вид[2]:

Литература[править | править вики-текст]

  • Петровский И. Г. Лекции об уравнениях с частными производными. — гл. IV, § 40. — Любое издание.
  • Тихонов А. Н., Самарский А. А. Уравнения математической физики. — гл. III. — Любое издание.
  • В.М. Уроев. Уравнения математической физики. — М.: ИФ Яуза, 1998. — ISBN 5-88923-026-3.
  • Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. — М.: Наука, 1974. — 320 с.

Примечания[править | править вики-текст]

  1. Петровский И. Г. Лекции об уравнениях с частными производными. — гл. IV, § 40. — Любое издание.
  2. Erich Miersemann. Partielle Differenzialgleichungen, p. 156