Равномерно темперированный строй

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Равноме́рно темпери́рованный строй, равномерная темперация (нем. gleichschwebende Temperatur, gleichschwebende Stimmung) — темперированный музыкальный строй, в котором каждая октава делится на математически равные интервалы, в наиболее типичном случае — на двенадцать полутонов (каждый из которых равен ). Такой строй господствует в европейской профессиональной музыке (академической и эстрадной) начиная с XVIII века до наших дней.

Исторический очерк[править | править вики-текст]

Равномерно темперированный строй возник в обстановке поисков учёными разных специальностей «идеального» для музыки строя. Исторически предшествующие чистый и среднетоновый строи имели ряд недостатков — прежде всего, они не позволяли транспонировать и модулировать в отдалённые тональности без того, чтобы в ряде гармонически консонантных созвучий (прежде всего, трезвучий и их обращений) не возникал резкий (ясно ощутимый на слух) акустический диссонанс.

Непосредственным предшественником равномерно темперированного строя в Европе был «хорошо темперированный» строй — целое семейство неравномерных темпераций, позволявших более или менее успешно (с разной степенью «акустической чистоты») играть в любой из тональностей. Одним из теоретиков и пропагандистов[1] такого строя был немецкий музыкант Андреас Веркмейстер. Многие исследователи разделяют мнение, что «Хорошо темперированный клавир» Иоганна Себастьяна Баха, хорошо знакомого с работами Веркмейстера, написан для инструментов именно с такой неравномерной темперацией[2].

Невозможно с достоверностью указать, кто именно «изобрёл» равномерную темперацию. Среди первых теоретиков нового равномерно темперированного строя называют Генриха Грамматеуса (1518), Винченцо Галилея (1581) и Марена Мерсенна. Фламандский математик Симон Стевин в своём труде «О теории певческого искусства» (ок. 1585) дал математически точный расчёт равномерной темперации. Написанная на родном языке Стевина (фламандском) его работа не получила резонанса; посмертная слава пришла к Стевину спустя 300 лет, в 1884 году, когда она была опубликована (и вскоре переведёна на другие языки).

Одним из первых авторов, давших теоретическое обоснование 12-ступенной равномерной темперации, был китайский принц Чжу Цзайюй (朱載堉), в трактате 1584 года[3].

У нового строя были свои оппоненты (например, Джузеппе Тартини) и свои пропагандисты (например, Иоганн Георг Нейдхардт). Равномерно темперированный строй вызывал отклонения от акустической («природной») чистоты созвучий, в результате в них появились небольшие биения. По мнению одних, эти нарушения чистоты были незначительной потерей, особенно с учётом новых возможностей, которые такой строй давал развитию тональной гармонии. Другие же рассматривали потерю «природной» чистоты как посягательство на «чистоту» музыки.

Противоречивость эстетических критериев (природная чистота против модуляционной свободы и неограниченной транспозиции) отражалась в трудах теоретиков музыки. Так, Андреас Веркмейстер утверждал, что в новом строе все аккорды (подразумевались прежде всего трезвучия) приобретают монотонную симметрию, в то время как в «хороших» строях каждый аккорд имел своё неповторимое (акустическое) звучание. С другой стороны, он же в позднем трактате «Musikalische Paradoxal-Discourse» (1707) в полемике с коллегой И. Г. Нейдхардтом защищал свой приоритет в «изобретении» равномерно темперированного строя. Уже в XVIII веке свобода развёртывания тональности (а также свобода транспозиции) одержала верх над природной чистотой. В академической и эстрадной музыке равномерная темперация получила мировое признание и стала фактическим стандартом музыкального строя.

Вычисление частот звуков[править | править вики-текст]

Можно математически вычислить частоты для всего звукоряда, пользуясь формулой:

,

где f0 — частота камертона (например Ля 440 Hz), а i — количество полутонов в интервале от искомого звука к эталону f0.

Последовательность вычисленных таким образом частот образует геометрическую прогрессию:

например, можно вычислить частоту звука на тон (2 полутона) ниже от камертона Ля — ноты соль:
если нам надо вычислить ноту Соль, но на октаву (12 полутонов) выше:

Частоты двух полученных нот Соль отличаются в два раза, что дает чистую октаву. Преимущества равномерной темперации также в том, что можно произвольно транспонировать пьесу на произвольный интервал вверх или вниз.

Сравнение с натуральным строем[править | править вики-текст]

Равномерно темперированный строй очень легко можно отобразить в виде измерения интервалов в центах

Тон C1 C D E E F F G G A B H C2
Цент 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Следующая таблица показывает отличия интервалов равномерно-темперированного ряда с натуральным

Интервал Равномерно темперированные интервалы Натуральные интервалы Разница в центах
Прима 0
Малая секунда −11,73
Большая секунда −3,91
Малая терция −15,64
Большая терция 13,69
Кварта 1,96
Тритон 9,78
Квинта −1,96
Малая секста −13,69
Большая секста 15,64
Малая септима 3,91
Большая септима 11,73
Октава 0

Расчёт конкретных высот применительно к клавиатуре фортепиано[править | править вики-текст]

Примечания[править | править вики-текст]

  • Значения частот рассчитаны исходя из стандартной частоты камертона ля1 = 440 Гц.
  • О феномене неточного равенства рассчитанных и реальных частот настроенного фортепиано (расширения интервалов на краях диапазона), см. Кривые Рейлсбека.

Субконтроктава[править | править вики-текст]

Охватывает звуки с частотами от 16,352 Гц (включительно) до 32,703 Гц. Наименования ступеней записываются с большой буквы и справа снизу ставится цифра 2 (или два штриха). В научной нотации имеет номер 0-й

Номер ступени Частота, Гц Слоговое обозначения по Гельмгольцу Буквенное обозначение по Гельмгольцу Американская нотация Классическая музыкальная нотация
1 16,352 До2 C2 C0 Субконтроктава
2 18,354 Ре2 D2 D0
3 20,602 Ми2 E2 E0
4 21,827 Фа2 F2 F0
5 24,500 Соль2 G2 G0
6 27,500 Ля2 A2 A0
7 30,868 Си2 H2 B0

Контроктава[править | править вики-текст]

Охватывает звуки с частотами от 32,703 Гц (включительно) до 65,406 Гц. Наименования ступеней записываются с большой буквы и справа снизу ставится цифра 1 (или один штрих). В научной нотации имеет номер 1.

Номер ступени Частота, Гц Слоговое обозначения по Гельмгольцу Буквенное обозначение по Гельмгольцу Американская нотация Классическая музыкальная нотация
1 32,703 До1 C1 C1 Контроктава
2 36,708 Ре1 D1 D1
3 41,203 Ми1 E1 E1
4 43,654 Фа1 F1 F1
5 48,999 Соль1 G1 G1
6 55,000 Ля1 A1 A1
7 61,735 Си1 H1 B1

Большая октава[править | править вики-текст]

Охватывает звуки с частотами от 65,406 Гц (включительно) до 130,81 Гц. Наименования ступеней записываются с большой буквы без дополнительных цифр или штрихов. В научной нотации имеет номер 2.

Номер ступени Частота, Гц Слоговое обозначения по Гельмгольцу Буквенное обозначение по Гельмгольцу Американская нотация Классическая музыкальная нотация
1 65,406 До C C2 Большая октава
2 73,416 Ре D D2
3 82,406 Ми E E2
4 87,307 Фа F F2
5 97,999 Соль G G2
6 110,00 Ля A A2
7 123,47 Си H B2

Малая октава[править | править вики-текст]

Охватывает звуки с частотами от 130,81 Гц (включительно) до 261,63 Гц. Наименования ступеней записываются с маленькой буквы без дополнительных цифр или штрихов. В научной нотации имеет номер 3.

Номер ступени Частота, Гц Слоговое обозначения по Гельмгольцу Буквенное обозначение по Гельмгольцу Американская нотация Классическая музыкальная нотация
1 130,81 до c C3 Малая октава
2 146,83 ре d D3
3 164,81 ми e E3
4 174,61 фа f F3
5 196,00 соль g G3
6 220,00 ля a A3
7 246,94 си h B3

Первая октава[править | править вики-текст]

Включает звуки с частотами от 261,63 Гц (включительно) до 523,25 Гц. Наименования ступеней записываются с маленькой буквы, справа сверху пишется цифра 1 (или один штрих). В научной нотации имеет номер 4.

Номер ступени Частота, Гц Слоговое обозначения по Гельмгольцу Буквенное обозначение по Гельмгольцу Американская нотация Классическая музыкальная нотация
1 261,63 до1 c1 C4 Первая октава
2 293,67 ре1 d1 D4
3 329,63 ми1 e1 E4
4 349,23 фа1 f1 F4
5 392,00 соль1 g1 G4
6 440,00 ля1 a1 A4
7 493,88 си1 h1 B4

Вторая октава[править | править вики-текст]

Включает звуки с частотами от 523,25 Гц (включительно) до 1046,5 Гц. Наименования ступеней записываются с маленькой буквы, справа сверху пишется цифра 2 (или два штриха). В научной нотации имеет номер 5.

Номер ступени Частота, Гц Слоговое обозначения по Гельмгольцу Буквенное обозначение по Гельмгольцу Американская нотация Классическая музыкальная нотация
1 523,25 до2 c2 C5 Вторая октава
2 587,33 ре2 d2 D5
3 659,26 ми2 e2 E5
4 698,46 фа2 f2 F5
5 783,99 соль2 g2 G5
6 880,00 ля2 a2 A5
7 987,77 си2 h2 B5

Третья октава[править | править вики-текст]

Включает звуки с частотами от 1046,5 Гц (включительно) до 2093,0 Гц. Наименования ступеней записываются с маленькой буквы, справа сверху пишется цифра 3 (или три штриха). В научной нотации имеет номер 6.

Номер ступени Частота, Гц Слоговое обозначения по Гельмгольцу Буквенное обозначение по Гельмгольцу Американская нотация Классическая музыкальная нотация
1 1046,5 до3 c3 C6 Третья октава
2 1174,7 ре3 d3 D6
3 1318,5 ми3 e3 E6
4 1396,9 фа3 f3 F6
5 1568,0 соль3 g3 G6
6 1760,0 ля3 a3 A6
7 1975,5 си3 h3 B6

Четвёртая октава[править | править вики-текст]

Включает звуки с частотами от 2093,0 Гц (включительно) до 4186,0 Гц. Наименования ступеней записываются с маленькой буквы, справа сверху пишется цифра 4 (или четыре штриха). В научной нотации имеет номер 7.

Номер ступени Частота, Гц Слоговое обозначения по Гельмгольцу Буквенное обозначение по Гельмгольцу Американская нотация Классическая музыкальная нотация
1 2093,0 до4 c4 C7 Четвёртая октава
2 2349,3 ре4 d4 D7
3 2637,0 ми4 e4 E7
4 2793,8 фа4 f4 F7
5 3136,0 соль4 g4 G7
6 3520,0 ля4 a4 A7
7 3951,1 си4 h4 B7

Пятая октава[править | править вики-текст]

Включает звуки с частотами от 4186,0 Гц (включительно) до 8372,0 Гц. В нотации Гельмгольца наименования ступеней записываются с маленькой буквы, справа сверху пишется цифра 5 (или пять штрихов). В научной нотации имеет номер 8.

Номер ступени Частота, Гц Слоговое обозначения по Гельмгольцу Буквенное обозначение по Гельмгольцу Американская нотация Классическая музыкальная нотация
1 4186,0 до5 c5 C8 Пятая октава
2 4698,6 ре5 d5 D8
3 5274,0 ми5 e5 E8
4 5587,7 фа5 f5 F8
5 6271,9 соль5 g5 G8
6 7040,0 ля5 a5 A8
7 7902,1 си5 h5 B8

Другие равномерные темперации[править | править вики-текст]

Существуют и другие равномерные темперации (РТ). Чтобы выражение n-тоновая РТ писать короче, может быть использовано сокращение n-тРТ[источник не указан 1406 дней], где числу n соответствует количество тонов на октаву. Известны музыкальные произведения, написанные в 19-тРТ[4], 24-тРТ, 31-тРТ[5] и даже 53-тРТ[6]. В начале XXI века П. А. Чернобривец работает над исследованием так называемой 20-тоновой равномерной темперации[7]. Термин «равномерная темперация», без уточнений, обычно понимается как 12-тРТ.

Равномерные темперации могут также делить иной интервал, не только октаву, на целое число равных ступеней. Чтобы избежать неясности, в англоязычной литературе, например, широко используется словосочетание «equal divisions of an octave», или его сокращённая форма EDO. В русском языке одинаковый смысл передаёт словосочетание «равные деления октавы», или РДО. Поэтому 12-тРТ может переименовываться в 12РДО, 19-тРТ в 19РДО, и так далее[8].

Равномерно темперированный строй и другие строи[править | править вики-текст]

Наряду с господствующим равномерно темперированным строем в Европе существовали и существуют другие строи. Русский исследователь музыки XIX века Владимир Одоевский, например, написал так:

Русский простолюдин с музыкальным дарованием, у которого ухо ещё не испорчено ни уличными шарманками, ни итальянскою оперою, поет весьма верно; и по собственному чутью берет интервал весьма отчетливо, разумеется, не в нашей уродливой темперированной гамме <…> Я записывал с голоса [известного нашего русского певца Ивана Евстратиевича Молчанова, человека с чудною музыкальною организациею] весьма интересную песню: «У Троицы, у Сергия, было под Москвою» <…> заметил, что Si певца никак не подходит к моему фортепианному Si; и Молчанов также заметил, что здесь что-то не то <…> Это навело меня на мысль устроить фортепиано нетемперированное в такой системе, как обыкновенное. За основание я принял естественную гамму, вычисленную акустическими логарифмами по методе Прони; в этом энгармоническом клавицине все квинты чистые, диезы, отмеченные красным цветом, отделены от бемолей и по невозможности в самом механизме инструмента, я пожертвовал fa и ut, чтобы сохранить si и mi, потому что наши народные певцы — по непонятной для меня причине поют более в диезных нежели в бемольных тонах

— В. Ф. Одоевский[9]

Широкомасштабное движение музыкантов-аутентистов практикует воспроизведение музыки прошлого в тех строях, в которых исполняемая ими музыка была написана.

В неевропейской традиционной музыке сохраняется практика использования строев, отличающихся от равномерно темперированного, — во всех жанрах и формах мощной макамо-мугамной традиции[10], а также в индийской[11] и др.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. См. Werckmeister A. Musicae mathematicae hodegus curiosus… (1687), Musikalische Temperatur, oder… (1691)
  2. Bach J. S. J. S. Bach: The Well-Tempered Clavier. — Los Angeles, CA: Alfred Music Publishing, 2004. — P. 4. — ISBN 0882848313.
  3. Hart R. Quantifying Ritual: Political Cosmology, Courtly Music, and Precision Mathematics in Seventeenth-Century China
  4. Nine Preludes for Two Pianos in 19-Tone Temperament by Joel Mandelbaum
  5. Concert No. 2 for two violins and orchestra by Henk Badings, 1969
  6. Letter from B. Cicovacki to P. Scaruffi (англ.):

    Иосип Славенски написал произведение для электронных инструментов с названием «Музыка в Натуральной тональной системе» (1937). В нём две части, первая написана для фисгармонии Бозанкета с 53 тонами в октаве…"

    …JOSIP STOLCER SLAVENSKI <…> composed a composition for electronic insruments with the title Music in the Natural Tonal System (1937). It includes two movements: the first movement is written for the Bosanquet enharmonium with 53 tones in an octave»)

  7. Чернобривец П. А. Звуковысотные отношения и особенности системообразования в условиях двадцатитоновой равномерной темперации. Журнал Общества теории музыки. № 8. 2014/4.
  8. Алиева И. Микротональная нотация посредством числовых уточнений знаков альтерации (на примере звукоряда тара)
  9. Одоевский В. Ф. [«Русскии простолюдин...»]. Цит. из сборника В. Ф. Одоевский. Музыкально-литературное наследие.— М.: Государственное музыкальное издательство, 1956.— с. 481—482
  10. В отечественной науке на это указывал, начиная с конца 1920-х годов, выдающийся музыковед и этнограф В. М. Беляев; см. например, его работы: Туркменская музыка. Том 1. М., 1928 (совм. с В. А. Успенским); Руководство для обмера народных музыкальных инструментов, М., 1931; Музыкальные инструменты Узбекистана, М., 1933; Ладовые системы в музыке народов СССР // В. М. Беляев. [Сб. статей]. М.: Сов. композитор, 1990. Среди современных публикаций — доклад С. Агаевой и Ш. Гаджиева «О проблемах исследования звуковысотной системы азербайджанских мугамов». VII Междунар. симпозиум науч.-иссл. группы «Макам» при Междунар. Совете по трад. муз. ЮНЕСКО. Баку. 2011. С. 20-32; см. также упомянутую статью И. Алиевой. Краткий обзор и библиографию зарубежной литературы по данной тематике см. в O. Wright et al. Arab Music. I. Art Music // The New Grove Dictionary of Music and Musicians. London, New York, 2001; H. Farhat. Iran. II. Classical traditions. 2. Theory of intervals and scales, 3. The modal system. // ibid. Также см. 'Issam El-Mallah. Arab Music and Musical Notation. Hans Schneider Verlag. Tutzing. 2001; S. Marcus. The Interface between Theory and Practice: Intonation in Arab Music. Asian Music, Vol. 24, No. 2 (1993), pp. 39-58; H. Farhat. Scales and Intervals: Theory and Practice, Irish Musical Studies, i (1990), pp. 216-26.
  11. Краткий обзор и библиографию зарубежной литературы по данной тематике см. в Powers H. and Widdess R. India, subcontinent of. III. Theory and practice of classical music. 1. Tonal systems // The New Grove Dictionary of Music and Musicians. London, New York, 2001.