Тетраэдрические числа

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Пирамида с длиной стороны 5 содержит 35 сфер. Каждый слой представляет одно из первых пяти треугольных чисел.

Тетраэдрические числа — это фигурные числа, представляющие пирамиду, в основании которой лежит треугольник.

Пример нескольких первых тетраэдрических чисел:

1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, … (последовательность A000292 в OEIS).

Формула[править | править вики-текст]

Формула для -го тетраэдрического числа:

Также формула может быть выражена через биномиальные коэффициенты:

Тетраэдрические числа находятся на 4-й позиции в треугольнике Паскаля.

Свойства[править | править вики-текст]

  • n-е тетраэдрическое число представляет собой сумму первых n треугольных чисел.
  • Только три тетраэдрических числа являются квадратными числами:
    T1 = 12 = 1,
    T2 = 22 = 4,
    T48 = 1402 = 19 600.
  • Пять чисел являются треугольными (последовательность A027568 в OEIS):
    Te1 = Tr1 = 1,
    Te3 = Tr4 = 10,
    Te8 = Tr15 = 120,
    Te20 = Tr55 = 1540,
    Te34 = Tr119 = 7140.
  • Единственным пирамидальным числом, которое одновременно квадратное и кубическое, является число 1.
  • Можно заметить, что:
    T5 = T4 + T3 + T2 + T1.
  • Бесконечная сумма обратных величин к тетраэдрическим числам равна 3/2, что может быть получено с помощью телескопического ряда:

Многомерное обобщение[править | править вики-текст]

В качестве многомерного обобщения треугольных и тетраэдрических чисел может рассматриваться количество -мерных сфер, которые могут быть упакованы в -мерный симплекс. Для -мерного пространства -е число может быть вычислено по следующей формуле:

Ссылки[править | править вики-текст]