Транзистор

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Дискретные транзисторы в различном конструктивном оформлении
Структура биполярного n-p-n транзистора. Ток через базу управляет током «коллектор-эмиттер»

Транзи́стор (англ. transistor), полупроводнико́вый трио́д — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами[1], способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет его использовать для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем. Транзисторами также называются дискретные электронные приборы, которые, выполняя функцию одиночного транзистора, имеют в своем составе много элементов, конструктивно являясь интегральной схемой, например составной транзистор или многие транзисторы большой мощности[2].

Транзисторы делятся на два класса отличные по структуре, принципу действия и параметрам — биполярные и полевые (униполярные). В биполярном транзисторе используются полупроводники с обоими типами проводимости, он работает за счет взаимодействия двух, близко расположенных на кристалле, p-n переходов и управляется изменением тока через база-эмиттерный переход, при этом вывод эмиттера всегда является общим для управляющего и выходного токов. В полевом транзисторе используется полупроводник только одного типа проводимости, расположенный в виде тонкого канала на который воздействует электрическое поле изолированного от канала затвора[3], управление осуществляется изменением напряжения между затвором и истоком. В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). В цифровой технике, в составе микросхем (логика, память, процессоры, компьютеры, цифровая связь и т. п.), напротив, биполярные транзисторы почти полностью вытеснены полевыми. В 1990-е годы был разработан новый тип гибридных биполярно-полевых транзисторов — IGBT которые сейчас широко применяются в силовой электронике.

В 1956 году за изобретение биполярного транзистора Уильям Шокли, Джон Бардин и Уолтер Браттейн получили Нобелевскую премию по физике. К 1980-м годам транзисторы, благодаря своей миниатюрности, экономичности, устойчивости к механическим воздействиям и невысокой стоимости практически полностью вытеснили электронные лампы из малосигнальной электроники. Благодаря своей способности работать при низких напряжениях и значительных токах, транзисторы позволили уменьшить потребность в электромагнитных реле и механических переключателях в оборудовании, а благодаря способности к миниатюризации и интеграции позволили создать интегральные схемы, заложив основы микроэлектроники. С 1990-х в связи с появлением новых мощных транзисторов, стали активно вытесняться электронными устройствами трансформаторы, электромеханические и тиристорные ключи в силовой электротехнике, начал активно развиваться Частотно-регулируемый привод и инверторные преобразователи напряжения.

На принципиальных схемах транзистор обозначается «VT» или «Q». До 1970-х гг. в русскоязычной литературе и документации также применялись обозначения «Т», «ПП» (полупроводниковый прибор) или «ПТ» (полупроводниковый триод).

История[править | править вики-текст]

Подробное рассмотрение темы: Изобретение транзистора

Изобретение транзистора, являющееся одним из важнейших достижений XX века[4], стало следствием длительного развития полупроводниковой электроники, которое началось в 1833 году, когда Майкл Фарадей провёл первые эксперименты с полупроводниковым материалом — сульфидом серебра. В 1874 году немецкий физик Карл Фердинанд Браун впервые обнаружил явление односторонней проводимости контакта металл—полупроводник. В 1906 году инженер Гринлиф Виттер Пиккард изобретает точечный полупроводниковый диод-детектор. В 1910 году английский физик Уильям Икклз (англ.) обнаружил у некоторых диодов способность генерировать электрические колебания, а инженер Олег Лосев в 1922 году самостоятельно разработал прообраз туннельного диода, с помощью которого впервые успешно использовал усилительные и генераторные свойства полупроводников (Кристадинный эффект), в детекторных и гетеродинных радиоприёмниках собственной конструкции. Особенностью этого периода развития было то, что физика полупроводников была ещё плохо изучена, все достижения являлись следствием экспериментов, учёные затруднялись объяснить, что происходит внутри кристалла, часто выдвигая ошибочные гипотезы. В то же время на рубеже 1920-30 годов в радиотехнике началась эпоха бурного индустриального развития электронных ламп, физика которых была изучена, и в этом направлении работала основная масса учёных-радиотехников, в то время как хрупкие и капризные полупроводниковые детекторы открытой конструкции, в которых нужно было при помощи металлической иглы вручную искать на кристалле «активные точки», стали уделом кустарей-одиночек и радиолюбителей, строивших на них простейшие радиоприемники. Потенциальных перспектив полупроводников никто не видел.

Создание биполярного и полевого транзисторов произошло разными путями.

Полевой транзистор[править | править вики-текст]

Первый шаг в создании полевого транзистора сделал австро-венгерский физик Юлий Эдгар Лилиенфельд, который предложил метод управления током в образце путем подачи на него поперечного электрического поля, которое, воздействуя на носители заряда, будет управлять проводимостью. Патенты были зарегистрированы в Канаде (22 октября 1925 года) и Германии (1928 год)[5][6]. В 1934 году немецкий физик Оскар Хайл (англ.) в Великобритании также запатентовал «бесконтактное реле», основанное на аналогичном принципе. Однако несмотря на то, что полевые транзисторы основаны на простом электростатическом эффекте поля и по физике проще биполярных, создать работоспособный образец долго не удавалось. Разработчики не могли обойти неизвестные на тот момент явления в поверхностном слое полупроводника, которые не позволяли управлять электрическим полем внутри кристалла у транзисторов такого типа (МДП-транзистор). Работоспособный полевой транзистор был создан уже после открытия биполярного транзистора. В 1952 году Уильям Шокли теоретически описал модель полевого транзистора другого типа, модуляция тока в котором, в отличие от ранее предложенных МДП[7] структур, осуществлялась изменением толщины проводящего канала за счёт расширения или сужения обеднённой области, прилегающего к каналу р-n-перехода. Это происходило при подаче на переход управляющего напряжения обратной полярности. Транзистор вошёл в практику под названием «полевой транзистор с управляющим р-n-переходом» (поверхностные явления устранялись, так как проводящий канал находился в глубине кристалла). Первый полевой МДП-транзистор, запатентованный ещё в 1920-е годы и сейчас составляющий основу компьютерной индустрии, впервые был изготовлен в 1960 году после работ американцев Канга и Аталлы, предложивших в качестве диэлектрика формировать на поверхности кремниевого кристалла тончайший слой двуокиси кремния, которая изолировала металлический затвор от проводящего канала, получив тем самым МОП-структуру[8]. Только в 90-х годах XX века МОП-технология стала доминировать над биполярной[9]

Биполярный транзистор[править | править вики-текст]

Бардин, Шокли и Браттейн в лаборатории Bell, 1948 год
Копия первого в мире работающего транзистора

В отличие от полевого, первый биполярный транзистор создавался экспериментально, а его принцип действия был открыт уже позднее. В 1929—1933 гг., в ЛФТИ, Олег Лосев под руководством А. Ф. Иоффе провёл ряд экспериментов с полупроводниковым устройством, конструктивно повторяющим точечный транзистор на кристалле карборунда (SiC), однако достаточного коэффициента усиления получить не удалось. Изучая явления электролюминесценции в полупроводниках, Лосев исследовал около 90 различных материалов, особенно выделяя кремний, и в 1939 году он вновь упоминает о работах над трёхэлектродными системами в своих записях, но начавшаяся война и гибель инженера в блокадном Ленинграде зимой 1942 года привели к тому, что некоторые его работы оказались утеряны и сейчас неизвестно, насколько далеко он продвинулся в создании транзистора. В начале 1930-х годов точечные трёхэлектродные усилители изготовили также радиолюбители Ларри Кайзер из Канады и Роберт Адамс из Новой Зеландии, однако их работы не были запатентованы и не подвергались научному анализу[4].

Успеха добилось опытно-конструкторское подразделение Bell Telephone Laboratories фирмы American Telephone and Telegraph, с 1936 году в нем, под руководством Джозефа Бекера, работала группа ученых специально нацеленная на создание твердотельных усилителей. До 1941 года изготовить полупроводниковый усилительный прибор не удалось (предпринимались попытки создания прототипа полевого транзистора). После войны, в 1945 году, исследования возобновились под руководством физика-теоретика Уильяма Шокли, после еще 2 лет неудач, 16 декабря 1947 года, исследователь Уолтер Браттейн, пытаясь преодолеть поверхностный эффект в германиевом кристалле и экспериментируя с двумя игольчатыми электродами, перепутал полярность приложенного напряжения и неожиданно получил устойчивое усиление сигнала. Последующее изучение открытия, совместно с теоретиком Джоном Бардиным показало, что никакого эффекта поля нет, в кристалле идут еще не изученные процессы, это был не полевой, а неизвестный прежде, биполярный транзистор. 23 декабря 1947 года состоялась презентация действующего макета изделия руководству фирмы, эта дата стала считаться датой рождения транзистора. Узнав об успехе, уже отошедший от дел Уильям Шокли, вновь подключается к исследованиям и за короткое время создает теорию биполярного транзистора, в которой уже наметил замену точечной технологии изготовления, более перспективной, плоскостной. Первоначально новый прибор назывался «германиевый триод» или «полупроводниковый триод», по аналогии с вакуумным триодом - электронной лампой схожей структуры, в мае 1948 года в лаборатории прошел конкурс на оригинальное название изобретения, в котором победил Джон Пирс (John R. Pierce), предложивший слово «transistor», образованное путем соединения терминов «transconductance» (активная межэлектродная проводимость) и «variable resistor» или «varistor» (переменное сопротивление, варистор) или, по другим версиям, от слов «transfer» — передача и «resist» — сопротивление. 30 июня 1948 г. в штаб-квартире фирмы в Нью-Йорке состоялась официальная презентация нового прибора, на транзисторах был изготовлен радиоприемник. И все же, мировой сенсации не состоялось, первоначально открытие не оценили по достоинству, ибо первые точечные транзисторы, в сравнении с электронными лампами, имели очень плохие характеристики, только в 1956 году Уильям Шокли (en:William Shockley), Уолтер Браттейн (en:Walter Houser Brattain) и Джон Бардин (en:John Bardeen) были награждены Нобелевской премией по физике «за исследования полупроводников и открытие транзисторного эффекта» [10]. Интересно, что Джон Бардин вскоре был удостоен Нобелевской премии во второй раз за создание теории сверхпроводимости.

Создание биполярного транзистора в Европе[править | править вики-текст]

Параллельно с работами американских ученых, в Европе, биполярный транзистор был создан физиком-экспериментатором Гербертом Матаре (en:Herbert Mataré) и теоретиком Генрихом Велкером (en:Heinrich Welker). В 1944 году, Герберт Матаре, работая в фирме Телефункен, разработал полупроводниковый «дуодиод» (двойной диод), который, конструктивно был похож на будущий точечный биполярный транзистор. Прибор использовался в радиолокационной технике, как два, близких по параметрам, выпрямительных точечных диода, выполненных на одном кристалле германия. Тогда же Матаре впервые обнаружил влияние тока одного диода на параметры другого и начал исследования в этом направлении. После войны Герберт Матаре, в Париже, встретился с Иоганном Велкером, где оба физика, работая в филиале американской корпорации Westinghouse Electric, продолжили эксперименты над дуодиодом в инициативном порядке. В начале июня 1948 года, еще не зная о результатах исследований группы Шокли в Bell Labs, ими, на основе дуодиода был создан, стабильно работающий, биполярный транзистор, который был назван «транзитрон», однако, патентная заявка на изобретение, отправленная в августе 1948 года, рассматривалась французским бюро патентов очень долго и только в 1952 году был получен патент на изобретение. Серийно выпускаемые фирмой Westinghouse транзитроны, несмотря на то что по качеству они успешно конкурировали с транзисторами, также не смогли завоевать рынок и вскоре работы в этом направлении прекратились[4].

Развитие транзисторных технологий[править | править вики-текст]

Позднее транзисторы заменили вакуумные лампы в большинстве электронных устройств, совершив революцию в создании интегральных схем и компьютеров.

Сегодня транзистор является одним из самых массовых изделий, производимых человеком. В 2013 году на каждого жителя Земли выпущено около 15 миллиардов транзисторов (большинство из них в составе интегральных схем)[11].

С появлением интегральных микросхем идёт непрерывная борьба за уменьшение размера элементарного транзистора. В настоящее время самые маленькие транзисторы содержат считанные атомы вещества и миниатюризация приближается к своему физическому пределу[12].

Классификация транзисторов[править | править вики-текст]

BJT PNP symbol (case)-Cyrillic.svg p-n-p JFET P-Channel Labelled ru.jpg канал p-типа
BJT NPN symbol (case)-Cyrillic.svg n-p-n JFET N-Channel Labelled ru.JPG канал n-типа
Биполярные Полевые
Обозначение транзисторов разных типов.
Условные обозначения:
Э — эмиттер, К — коллектор, Б — база;
З — затвор, И — исток, С — сток.

Ниже приведена формальная классификация токовых транзисторов, где рабочее тело представляет собой поток носителей тока, а состояния, между которыми переключается прибор, определяются по величине сигнала: малый сигнал — большой сигнал, закрытое состояние — открытое состояние, на которых реализуется двоичная логика работы транзистора. Современная технология может оперировать не только электрическим зарядом, но и магнитными моментами, спином отдельного электрона, фононами и световыми квантами, квантовыми состояниями в общем случае.

По основному полупроводниковому материалу[править | править вики-текст]

Помимо основного полупроводникового материала, применяемого обычно в виде монокристалла, транзистор содержит в своей конструкции легирующие добавки к основному материалу, металлические выводы, изолирующие элементы, части корпуса (пластиковые или керамические). Иногда употребляются комбинированные наименования, частично описывающие материалы конкретной разновидности (например, «кремний на сапфире» или «металл-окисел-полупроводник»). Однако основными являются транзисторы на основе кремния, германия, арсенида галлия.

Другие материалы для транзисторов до недавнего времени не использовались. В настоящее время имеются транзисторы на основе, например, прозрачных полупроводников для использования в матрицах дисплеев. Перспективный материал для транзисторов — полупроводниковые полимеры. Также имеются отдельные сообщения о транзисторах на основе углеродных нанотрубок[13], о графеновых полевых транзисторах.

По структуре[править | править вики-текст]

 
 
 
 
Транзисторы
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Биполярные
 
 
 
 
 
 
Полевые
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
p-n-p
 
n-p-n
 
С затвором в виде p-n-перехода
 
С изолированным затвором
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
С каналом n-типа
 
С каналом p-типа
 
Со встроенным каналом
 
С индуцированным каналом
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
С каналом n-типа
 
С каналом p-типа
 
С каналом n-типа
 
С каналом p-типа
 
 


Принцип действия и способы применения транзисторов существенно зависят от их типа и внутренней структуры.

  • Биполярные
    • n-p-n структуры, «обратной проводимости».
    • p-n-p структуры, «прямой проводимости».

В биполярном транзисторе носители заряда движутся от эмиттера через тонкую базу к коллектору. База отделена от эмиттера и коллектора p-n переходами. Ток протекает через транзистор лишь тогда, когда носители заряда инжектируются из эмиттера в базу через p-n переход. В базе они являются неосновными носителями заряда и легко проникают через другой p-n переход между базой и коллектором, ускоряясь при этом. В самой базе носители заряда движутся за счёт диффузионного механизма, поэтому база должна быть достаточно тонкой. Управление током между эмиттером и коллектором осуществляется изменением напряжения между базой и эмиттером, от которого зависят условия инжекции носителей заряда в базу.

В полевом транзисторе ток протекает от истока до стока через канал под затвором. Канал существует в легированном полупроводнике в промежутке между затвором и нелегированной подложкой, в которой нет носителей заряда, и она не может проводить ток. Преимущественно под затвором существует область обеднения, в которой тоже нет носителей заряда благодаря образованию между легированным полупроводником и металлическим затвором контакта Шоттки. Таким образом ширина канала ограничена пространством между подложкой и областью обеднения. Приложенное к затвору напряжение увеличивает или уменьшает ширину области обеднения и, тем самым, ширину канала, контролируя ток.

Другие разновидности транзисторов[править | править вики-текст]

Составные транзисторы[править | править вики-текст]

По мощности[править | править вики-текст]

По рассеиваемой в виде тепла мощности различают:

  • маломощные транзисторы до 100 мВт
  • транзисторы средней мощности от 0,1 до 1 Вт
  • мощные транзисторы (больше 1 Вт).

По исполнению[править | править вики-текст]

  • дискретные транзисторы
    • корпусные
      • Для свободного монтажа
      • Для установки на радиатор
      • Для автоматизированных систем пайки
    • бескорпусные
  • транзисторы в составе интегральных схем.

По материалу и конструкции корпуса[править | править вики-текст]

  • Металлостеклянный/металлокерамический.
Материал корпуса — металл. Материал изоляторов, через которые проходят выводы — стекло либо керамика. Имеют наибольший диапазон температур окружающей среды и максимальную защищённость от воздействия внешних факторов.
  • Пластмассовый.
Отличаются меньшей стоимостью и более мягкими допустимыми условиями эксплуатации. У мощных приборов из пластмассового корпуса, кроме выводов, выступает металлический теплоотвод для монтирования прибора на внешний радиатор.

Прочие типы[править | править вики-текст]

Выделение по некоторым характеристикам[править | править вики-текст]

Транзисторы BISS (Breakthrough in Small Signal, дословно — «прорыв в малом сигнале») — биполярные транзисторы с улучшенными малосигнальными параметрами. Существенное улучшение параметров транзисторов BISS достигнуто за счёт изменения конструкции зоны эмиттера. Первые разработки этого класса устройств также носили наименование «микротоковые приборы».

Транзисторы со встроенными резисторами RET (Resistor-equipped transistors) — биполярные транзисторы со встроенными в один корпус резисторами. RET — это транзистор общего назначения со встроенным одним или двумя резисторами. Такая конструкция транзистора позволяет сократить количество навесных компонентов и минимизирует необходимую площадь монтажа. RET транзисторы применяются для непосредственного подключения к выходам микросхем без использования гасящих резисторов.

Применение гетероперехода позволяет создавать высокоскоростные и высокочастотные полевые транзисторы, такие как HEMT.

Схемы включения транзистора[править | править вики-текст]

Для включения в схему транзистор должен иметь четыре вывода — два входных и два выходных. Но транзисторы всех разновидностей имеют только три вывода. Для включения трёхвыводного прибора необходимо один из выводов объединить, и поскольку таких комбинаций может быть только три, то существуют три базовых схемы включения транзистора:

Схемы включения биполярного транзистора[править | править вики-текст]

  • с общим эмиттером (ОЭ) — осуществляет усиление как по току, так и по напряжению — наиболее часто применяемая схема;
  • с общим коллектором (ОК) — осуществляет усиление только по току — применяется для согласования высокоимпедансных источников сигнала с низкоомными сопротивлениями нагрузок;
  • с общей базой (ОБ) — усиление только по напряжению, в силу своих недостатков в однотранзисторных каскадах усиления применяется редко (в основном в усилителях СВЧ), обычно в составных схемах (например, каскодных).

Схемы включения полевого транзистора[править | править вики-текст]

Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения:

  • с общим истоком (ОИ) — аналог ОЭ биполярного транзистора;
  • с общим стоком (ОС) — аналог ОК биполярного транзистора;
  • с общим затвором (ОЗ) — аналог ОБ биполярного транзистора.

Схемы с открытым коллектором (стоком)[править | править вики-текст]

«Открытым коллектором (стоком)» называют включение транзистора по схеме с общим эмиттером (истоком) в составе электронного модуля или микросхемы, когда коллекторный (стоковый) вывод не соединяется с другими элементами модуля (микросхемы), а непосредственно выводится наружу (на разъем модуля или вывод микросхемы). Выбор нагрузки транзистора и тока коллектора (стока) при этом оставляется за разработчиком конечной схемы, в составе которой применяются модуль или микросхема. В частности, нагрузка такого транзистора может быть подключена к источнику питания с более высоким или низким напряжением, чем напряжение питания модуля/микросхемы. Такой подход значительно расширяет рамки применимости модуля или микросхемы за счет небольшого усложнения конечной схемы. Транзисторы с открытым коллектором (стоком) применяются в логических элементах ТТЛ, микросхемах с мощными ключевыми выходными каскадами, преобразователях уровней, шинных формирователях (драйверах) и т. п.

Статья с подробным описанием принципа (в англоязычном разделе).

Реже применяется обратное включение — с открытым эмиттером (истоком). Оно также позволяет выбирать нагрузку транзистора после изготовления основной схемы, подавать на эмиттер/сток напряжение полярности, противоположной напряжению питания основной схемы (например, отрицательное напряжение для схем с биполярными транзисторами n-p-n или N-канальными полевыми), и т. п.

Применение транзисторов[править | править вики-текст]

Вне зависимости от типа транзистора, принцип применения его един:

  • Источник питания питает электрической энергией нагрузку, которой может быть громкоговоритель, реле, лампа накаливания, вход другого, более мощного транзистора, электронной лампы и т. п. Именно источник питания даёт нужную мощность для «раскачки» нагрузки.
  • Транзистор же используется для ограничения силы тока, поступающего в нагрузку, и включается в разрыв между источником питания и нагрузкой. То есть транзистор представляет собой некий вариант полупроводникового резистора, сопротивление которого можно очень быстро изменять.
  • Выходное сопротивление транзистора меняется в зависимости от напряжения на управляющем электроде. Важно то, что это напряжение, а также сила тока, потребляемая входной цепью транзистора, гораздо меньше напряжения и силы тока в выходной цепи.

Надо заметить, что это положение не всегда верно: так в схеме с общим коллектором (ОК) ток на выходе в β раз больше, чем на входе, напряжение же на выходе несколько ниже входного; в схеме с общей базой увеличивается напряжение на выходе по сравнению с входом, но выходной ток меньше входного. Таким образом, в схеме ОК происходит усиление только по току, а в схеме ОБ — только по напряжению. За счёт контролируемого управления источником питания достигается усиление сигнала либо по току, либо по напряжению либо по мощности (схемы с общим эмиттером — ОЭ).

  • Если мощности входного сигнала недостаточно для «раскачки» входной цепи применяемого транзистора, или конкретный транзистор не даёт нужного усиления, применяют каскадное включение транзисторов, когда более чувствительный и менее мощный транзистор управляет энергией источника питания на входе более мощного транзистора. Также подключение выхода одного транзистора ко входу другого может использоваться в генераторных схемах типа мультивибратора. В этом случае применяются одинаковые по мощности транзисторы.

Транзистор применяется в:

  • Усилительных схемах. Работает, как правило, в усилительном режиме.[17][18] Существуют экспериментальные разработки полностью цифровых усилителей, на основе ЦАП, состоящих из мощных транзисторов.[19][20] Транзисторы в таких усилителях работают в ключевом режиме.
  • Генераторах сигналов. В зависимости от типа генератора транзистор может использоваться либо в ключевом (генерация прямоугольных сигналов), либо в усилительном режиме (генерация сигналов произвольной формы).
  • Электронных ключах. Транзисторы работают в ключевом режиме. Ключевые схемы можно условно назвать усилителями (регенераторами) цифровых сигналов. Иногда электронные ключи применяют и для управления силой тока в аналоговой нагрузке. Это делается, когда нагрузка обладает достаточно большой инерционностью, а напряжение и сила тока в ней регулируются не амплитудой, а шириной импульсов. На подобном принципе основаны бытовые диммеры для ламп накаливания и нагревательных приборов, а также импульсные источники питания.

Транзисторы применяются в качестве активных (усилительных) элементов в усилительных и переключательных каскадах.
Реле и тиристоры имеют больший коэффициент усиления мощности, чем транзисторы, но работают только в ключевом (переключательном) режиме.

Вся современная цифровая техника построена, в основном, на полевых МОП (металл-оксид-полупроводник)-транзисторах (МОПТ), как более экономичных, по сравнению с БТ, элементах. Иногда их называют МДП (металл-диэлектрик-полупроводник)-транзисторы. Международный термин — MOSFET (metal-oxide-semiconductor field effect transistor). Транзисторы изготавливаются в рамках интегральной технологии на одном кремниевом кристалле (чипе) и составляют элементарный «кирпичик» для построения микросхем логики, памяти, процессора и т. п. Размеры современных МОПТ составляют от 90 до 8 нм[источник не указан 2378 дней]. В настоящее время на одном современном кристалле площадью 1—2 см² могут разместиться несколько (пока единицы) миллиардов МОПТ. На протяжении 60 лет происходит уменьшение размеров (миниатюризация) МОПТ и увеличение их количества на одном чипе (степень интеграции), в ближайшие годы ожидается дальнейшее увеличение степени интеграции транзисторов на чипе (см. Закон Мура). Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров, снижению энергопотребления и тепловыделения.

В настоящее время микропроцессоры Intel собираются на трёхмерных транзисторах (3d транзисторы) именуемых Tri-Gate. Эта революционная технология позволила существенно улучшить существующие характеристики процессоров. Отметим, что переход к 3D-транзисторам при технологическом процессе 22 нм позволил повысить производительность процессоров на 30 % (по оценкам Intel) и снизить энергопотребление [источник не указан 1691 день]. Примечательно, что затраты на производство возрастут всего на 2—3 %, то есть в магазинах новые процессоры не будут значительно дороже старых[источник не указан 1691 день]. Суть технологии в том, что теперь сквозь затвор транзистора проходит особый High-K диэлектрик, который снижает токи утечки.

Сравнение с электронными лампами[править | править вики-текст]

До разработки транзисторов, вакуумные (электронные) лампы (или просто «лампы») были главными активными компонентами в электронном оборудовании. По принципу работы наиболее родственен электронной лампе полевой транзистор. Многие схемы, разработанные для ламп, стали применяться и для транзисторов (эти схемы даже получили некоторое развитие, поскольку электронные лампы имеют фактически только один тип проводимости — электронный, транзисторы же могут иметь как электронный, так и дырочный тип проводимости (эквивалент виртуальной «позитронной лампы»)), что привело к широкому использованию комплементарных схем (КМОП); некоторые формулы, описывающие работу ламп, применяются для описания работы полевых транзисторов.

Преимущества[править | править вики-текст]

Основные преимущества, которые позволили транзисторам заменить своих предшественников (вакуумные лампы) в большинстве электронных устройств:

  • малые размеры и небольшой вес, что способствует развитию миниатюрных электронных устройств;
  • высокая степень автоматизации производственных процессов, что ведёт к снижению удельной стоимости;
  • низкие рабочие напряжения, что позволяет использовать транзисторы в небольших, с питанием от батареек, электронных устройствах;
  • не требуется дополнительного времени на разогрев катода после включения устройства;
  • уменьшение рассеиваемой мощности, что способствует повышению энергоэффективности прибора в целом;
  • высокая надёжность и бо́льшая физическая прочность;
  • очень продолжительный срок службы — некоторые транзисторные устройства находились в эксплуатации более 50 лет;
  • возможность сочетания с дополнительными устройствами, что облегчает разработку дополнительных схем, что не представляется возможным с вакуумными лампами;
  • стойкость к механическим ударам и вибрации, что позволяет избежать проблем при использовании в микрофонах и в аудиоустройствах.

Недостатки (ограничения)[править | править вики-текст]

  • Кремниевые транзисторы обычно не работают при напряжениях выше 1 кВ (вакуумные лампы могут работать с напряжениями на порядки больше 1 кВ). При коммутации цепей с напряжением свыше 1 кВ, как правило, используются IGBT транзисторы;
  • Применение транзисторов в мощных радиовещательных и СВЧ передатчиках нередко оказывается технически и экономически нецелесообразным: требуется параллельное включение и согласование многих сравнительно маломощных усилителей. Мощные и сверхмощные генераторные лампы с воздушным или водяным охлаждением анода, а также магнетроны, клистроны, лампы бегущей волны (ЛБВ) обеспечивают лучшее сочетание высоких частот, мощностей и приемлемой стоимости.
  • кремниевые транзисторы гораздо более уязвимы, чем вакуумные лампы, к действию электромагнитного импульса, в том числе и одного из поражающих факторов высотного ядерного взрыва;
  • чувствительность к радиации и космическим лучам (созданы специальные радиационно-стойкие микросхемы для электронных устройств космических аппаратов);

См. также[править | править вики-текст]


Примечания[править | править вики-текст]

  1. Иногда имеется четвёртый вывод от корпуса, подложки или второго затвора в двухзатворных полевых транзисторах.
  2. Например транзистор 2П828А представляет собой ИС, выполненную на кристалле 13×13 мм и содержащую более 100 тысяч элементарных транзисторов
  3. В качестве изолятора используется обратно смещенный внешним напряжением p-n переход или тонкий слой окисла (МОП-структура).
  4. 1 2 3 Гуреева Ольга. Транзисторная история. Компоненты и технологии, № 9 2006
  5. Vardalas, John, Twists and Turns in the Development of the Transistor IEEE-USA Today’s Engineer, May 2003.
  6. Lilienfeld, Julius Edgar, «Method and apparatus for controlling electric current» U.S. Patent 1 745 175 1930-01-28 (filed in Canada 1925-10-22, in US 1926-10-08).
  7. Металл Диэлектрик Полупроводник
  8. Металл-Окисел-Полупроводник
  9. Дьяконов Владимир. Мощные полевые транзисторы: история, развитие и перспективы. Аналитический обзор. Силовая Электроника, № 3, 2011.
  10. Малашевич Б. М. Технологии. 60 лет транзистору. Виртуальный компьютерный музей. 6.01.2008
  11. Малашевич Б. М. 50 лет отечественной микроэлектронике. Краткие основы и история развития. Серия «Очерки истории Российской электроники» Выпуск 5. М.: Техносфера, 2013.- 800с. ISBN 978-5-94836-346-2
  12. Леонид Попов. «Физики построили одноатомный транзистор». интернет-журнал «Мембрана»
  13. membrana. На ветвях углеродного дерева вырос небывалый транзистор. Константин Болотов, 16 августа 2005
  14. Специальные типы транзисторов
  15. 04-09-2006. Технологии. В США разрабатывается одномолекулярный транзистор
  16. http://www.chipnews.ru/html.cgi/arhiv/99_07/stat_13.htm Одноэлектронные устройства с интегрированными кремниевыми областями проводимости.
  17. Введение в электронику — Режимы работы усилительных элементов
  18. Режимы работы усилительного элемента
  19. NAD M2 Direct Digital Amplifier
  20. Импульсивная натура — Интегральный усилитель NAD M2

Литература[править | править вики-текст]

  • А. К. Криштафович, В. В. Трифонюк. Основы промышленной электроники. — 2-е изд. — М.: "Высшая школа", 1985. — 287 с.
  • Н. И Овсянников. Кремниевые биполярные транзисторы: Справ. пособие. — Мн.: "Высшая школа", 1989. — 302 с. — ISBN 5-339-00211-X.

Ссылки[править | править вики-текст]

Логотип Викисловаря
В Викисловаре есть статья «транзистор»