Белый шум

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Спектр шума, который можно считать белым
(аудио)
Пример белого шума
Десятисекундный отрывок звукового белого шума
Помощь по воспроизведению

Белый шум — стационарный шум, спектральные составляющие которого равномерно распределены по всему диапазону задействованных частот. Примерами белого шума являются шум близкого водопада[1] (отдаленный шум водопада — розовый, так как высокочастотные составляющие звука затухают в воздухе сильнее низкочастотных), или шум Шоттки на клеммах большого сопротивления, или шум стабилитрона, через который протекает очень малый ток. Название получил от белого света, содержащего электромагнитные волны частот всего видимого диапазона электромагнитного излучения.

В природе и технике «чисто» белый шум (то есть белый шум, имеющий одинаковую спектральную мощность на всех частотах) не встречается (ввиду того, что такой сигнал имел бы бесконечную мощность), однако под категорию белых шумов попадают любые шумы, спектральная плотность которых одинакова (или слабо отличается) в рассматриваемом диапазоне частот.

Статистические свойства[править | править исходный текст]

Пример реализации процесса со свойствами белого шума.

Термин «белый шум» обычно применяется к сигналу, имеющему автокорреляционную функцию, математически описываемую дельта-функцией Дирака по всем измерениям многомерного пространства, в котором этот сигнал рассматривается. Сигналы, обладающие этим свойством, могут рассматриваться как белый шум. Данное статистическое свойство является основным для сигналов такого типа.

То, что белый шум некоррелирован по времени (или по другому аргументу), не определяет его значений во временной (или любой другой рассматриваемой аргументной) области. Наборы, принимаемые сигналом, могут быть произвольными с точностью до главного статистического свойства (однако постоянная составляющая такого сигнала должна быть равна нулю). К примеру, двоичный сигнал, который может принимать только значения, равные нулю или единице, будет являться белым шумом только если последовательность нулей и единиц будет некоррелирована. Сигналы, имеющие непрерывное распределение (к примеру, нормальное распределение), также могут быть белым шумом.

Дискретный белый шум — это просто последовательность независимых (то есть статистически не связанных друг с другом) чисел. С использованием (правда, не лучшего) генератора псевдослучайных чисел пакета Visual C++, дискретный белый шум можно получить так:

x[i] = 2 * ((rand()/((double)RAND_MAX)) — 0.5)

В данном случае x — массив дискретного белого шума (без нулевой частотной составляющей), имеющего равномерное распределение от −1 до 1.

Иногда ошибочно предполагается, что гауссовый шум (то есть шум с гауссовым распределением по амплитуде — см. нормальное распределение) обязательно является белым шумом. Однако эти понятия неэквивалентны. Гауссовый шум предполагает распределение значений сигнала в виде нормального распределения, тогда как термин «белый» имеет отношение к корреляции сигнала в два различных момента времени (эта корреляция не зависит от распределения амплитуды шума). Белый шум может иметь любое распределение — как Гаусса, так и распределение Пуассона, Коши и т. д. Гауссовый белый шум в качестве модели хорошо подходит для математического описания многих природных процессов (см. Аддитивный белый гауссовый шум).

Цветной шум[править | править исходный текст]

Для удобства описания в физике введены термины, приписывающие шумовым сигналам различные цвета в зависимости от их статистических свойств, к примеру, розовый шум или синий шум.

Применения[править | править исходный текст]

Белый шум находит множество применений в физике и технике. Одно из них — в архитектурной акустике. Для того, чтобы скрыть нежелательные шумы во внутренних пространствах зданий, генерируется постоянный белый шум низкой амплитуды.

В электронной музыке белый шум используется как в качестве одного из инструментов музыкальной аранжировки, так и в качестве входного сигнала для специальных фильтров, формирующих шумовые сигналы других типов. Широко применяется также при синтезировании аудиосигналов, обычно для воссоздания звучания ударных инструментов, таких как тарелки.

Белый шум используется для измерения частотных характеристик различных линейных динамических систем, таких как усилители, электронные фильтры, дискретные системы управления и т. д. При подаче на вход такой системы белого шума, на выходе получаем сигнал, являющийся откликом системы на приложенное воздействие. Ввиду того, что амплитудно-фазовая частотная характеристика линейной системы есть отношение преобразования Фурье выходного сигнала к преобразованию Фурье входного сигнала, получить эту характеристику математически достаточно просто, причём для всех частот, для которых входной сигнал можно считать белым шумом.

Во многих генераторах случайных чисел (как программных, так и аппаратных) белый шум используется для генерирования случайных чисел и случайных последовательностей.

Математический обзор[править | править исходный текст]

Вектор случайных чисел[править | править исходный текст]

Вектор случайных чисел \mathbf{w} является последовательностью отсчётов белого шума тогда и только тогда, когда его среднее значение \mu_w и автокорреляционная матрица R_{ww} удовлетворяют следующим равенствам:

\mu_w =  \mathbb{E}\{ \mathbf{w} \} = 0
R_{ww} = \mathbb{E}\{ \mathbf{w} \mathbf{w}^T\} = \sigma^2 \mathbf{I}

То есть, это вектор случайных чисел с нулевым средним значением, автокорреляционная матрица которого представляет собой диагональную матрицу с дисперсиями по главной диагонали.

Белый случайный процесс (белый шум)[править | править исходный текст]

Непрерывный во времени случайный процесс w(t), где t \in \mathbb{R}, является белым шумом, тогда и только тогда, когда его математическое ожидание и автокорреляционная функция удовлетворяют следующим равенствам соответственно:

\mu_w(t) =  \mathbb{E}\{ w(t)\} = 0
R_{ww}(t_1, t_2) = \mathbb{E}\{ w(t_1) w(t_2)\} = \sigma^2 \delta(t_1 - t_2).

В других обозначениях, более близких радиофизикам отечественной школы:

 <w(t)> = 0 \frac{}{}
 B_{ww}(t_1, t_2) \equiv < \, [w(t_1) - <w(t_1)>] \, [w(t_2) - <w(t_2)>] \, > = < \, w(t_1) w(t_2) \, > = \sigma_w^2 \delta(t_1 - t_2).

То есть, это случайный процесс с нулевым математическим ожиданием, имеющий автокорелляционную функцию, являющуюся дельта-функцией Дирака. Такая автокорреляционная функция предполагает следующую спектральную плотность мощности:

S_{ww}(\omega) = \sigma_w^2 \,\!

так как преобразование Фурье дельта-функции равно единице на всех частотах. Ввиду того, что спектральная плотность мощности одинакова на всех частотах, белый шум и получил своё название (по аналогии с частотным спектром белого света).

См. также[править | править исходный текст]

Примечания[править | править исходный текст]

Ссылки[править | править исходный текст]

Логотип Викисловаря
В Викисловаре есть статья «белый шум»