Нормальное распределение

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Нормальное распределение
Плотность вероятности
Плотность нормального распределения
Зеленая линия соответствует стандартному нормальному распределению
Функция распределения
Функция распределения нормального распределения
Цвета на этом графике соответствуют графику наверху
Обозначение N(\mu,\sigma^2)\,
Параметры \mu - коэффициент сдвига (вещественное число)
\sigma>0 - коэффициент масштаба (вещественный, строго положительный)
Носитель x \in (-\infty;+\infty)\!
Плотность вероятности \frac1{\sigma\sqrt{2\pi}}\; \exp\left(-\frac{\left(x-\mu\right)^2}{2\sigma^2} \right) \!
Функция распределения \frac12\Big[1 + \operatorname{erf}\Big( \frac{x-\mu}{\sqrt{2\sigma^2}}\Big)\Big]
Математическое ожидание \mu\,
Медиана \mu\,
Мода \mu\,
Дисперсия \sigma^2\,
Коэффициент асимметрии 0\,
Коэффициент эксцесса 0\,
Информационная энтропия \ln\left(\sigma\sqrt{2\,\pi\,e}\right)\!
Производящая функция моментов M_X(t)= \exp\left(\mu\,t+\frac{\sigma^2 t^2}{2}\right)
Характеристическая функция \phi_X(t)=\exp\left(\mu\,i\,t-\frac{\sigma^2 t^2}{2}\right)


Нормальное распределение,[1][2] также называемое распределением Гаусса — распределение вероятностей, которое в одномерном случае задается функцией плотности вероятности, совпадающей с функцией Гаусса:


    f(x) = \tfrac{1}{\sigma\sqrt{2\pi}}\; e^{ -\frac{(x-\mu)^2}{2\sigma^2} },

где параметр μ — математическое ожидание(среднее значение), медиана и мода распределения, а параметр σ — стандартное отклонение (σ² — дисперсия) распределения.

Таким образом, одномерное нормальное распределение является двухпараметрическим семейством распределений. Многомерный случай описан в многомерном нормальном распределении.

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием μ = 0 и стандартным отклонением σ = 1.

Значение[править | править вики-текст]

Важное значение нормального распределения во многих областях науки, например, в математической статистике и статистической физике вытекает из центральной предельной теоремы теории вероятностей. Если результат наблюдения является суммой многих случайных слабо взаимозависимых величин, каждая из которых вносит малый вклад относительно общей суммы, то при увеличении числа слагаемых распределение центрированного и нормированного результата стремится к нормальному. Этот закон теории вероятностей имеет следствием широкое распространение нормального распределения, что и стало одной из причин его наименования.

Свойства[править | править вики-текст]

Моменты[править | править вики-текст]

Моментами и абсолютными моментами случайной величины X называются математические ожидания Xp и  |X|^p соответственно. Если математическое ожидание случайной величины μ = 0, то эти параметры называются центральными моментами. В большинстве случаев представляют интерес моменты для целых p.

Если X имеет нормальное распределение, то для неё существуют (конечные) моменты при всех p с действительной частью больше −1. Для неотрицательных целых p, центральные моменты таковы:


    \mathrm{E}\left[X^p\right] =
      \begin{cases}
        0 & p=2n+1, \\
        \sigma^p\,(p-1)!! & p=2n.
      \end{cases}

Здесь n!! означает двойной факториал, то есть произведение всех нечетных от n до 1.

Центральные абсолютные моменты для неотрицательных целых p таковы:


    \operatorname{E}\left[|X|^p\right] =
      \sigma^p\,(p-1)!! \cdot \left.\begin{cases}
        \sqrt{\frac{2}{\pi}} & p=2n+1, \\
        1 & p=2n.
      \end{cases}\right\}
    = \sigma^p \cdot \frac{2^{\frac{p}{2}}\Gamma\left(\frac{p+1}{2}\right)}{\sqrt{\pi}}.

Последняя формула справедлива также для произвольных p > -1.

Бесконечная делимость[править | править вики-текст]

Нормальное распределение является бесконечно делимым.

Если случайные величины X_1 и X_2 независимы и имеют нормальное распределение с математическими ожиданиями \mu_1 и \mu_2 и дисперсиями \sigma_1^2 и \sigma_2^2 соответственно, то X_1+X_2 также имеет нормальное распределение с математическим ожиданием \mu_1+\mu_2 и дисперсией \sigma_1^2+\sigma_2^2. Отсюда вытекает, что нормальная случайная величина представима как сумма произвольного числа независимых нормальных случайных величин.

Максимальная энтропия[править | править вики-текст]

Нормальное распределение является непрерывным распределением с максимальной энтропией при заданном математическом ожидании и дисперсии.[3][4]

Моделирование нормальных псевдослучайных величин[править | править вики-текст]

Простейшие приближённые методы моделирования основываются на центральной предельной теореме. Именно, если сложить несколько независимых одинаково распределённых величин с конечной дисперсией, то сумма будет распределена примерно нормально. Например, если сложить 12 независимых стандартно равномерно распределённых случайных величин, получим приближённое стандартное нормальное распределение.

Для программного генерирования нормально распределённых псевдослучайных величин предпочтительнее использовать преобразование Бокса — Мюллера. Оно позволяет генерировать одну нормально распределённую величину на базе одной равномерно распределённой.

Нормальное распределение в природе и приложениях[править | править вики-текст]

Нормальное распределение часто встречается в природе. Например, следующие случайные величины хорошо моделируются нормальным распределением:

  • отклонение при стрельбе.
  • погрешности измерений (однако погрешности некоторых измерительных приборов имеют не нормальные распределения).
  • некоторые характеристики живых организмов в популяции.

Такое широкое распространение этого распределения связано с тем, что оно является бесконечно делимым непрерывным распределением с конечной дисперсией. Поэтому к нему в пределе приближаются некоторые другие, например, биномиальное и пуассоновское. Этим распределением моделируются многие не детерминированные физические процессы.[5]

Многомерное нормальное распределение используется при исследовании многомерных случайных величин (случайных векторов). Одним из многочисленных примеров таких приложений является исследование свойств личности человека в психологии и психиатрии.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Вентцель Е. С. Теория вероятностей. — 10-е изд., стер.. — М.: «Академия», 2005. — 576 с. — ISBN 5-7695-2311-5.
  2. Ширяев, А. Н. Вероятность. — М.: Наука, 1980.
  3. Cover Thomas M. Elements of Information Theory. — John Wiley and Sons, 2006. — P. 254.
  4. (2009) «Maximum Entropy Autoregressive Conditional Heteroskedasticity Model». Journal of Econometrics (Elsevier): 219–230. Проверено 2011-06-02.
  5. Талеб Н. Н. Чёрный лебедь. Под знаком непредсказуемости. = The Black Swan: The Impact of the Highly Improbable. — КоЛибри, 2012. — 525 с. — ISBN 978-5-389-00573-0.

Ссылки[править | править вики-текст]


Bvn-small.png  п·о·р        Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | Биномиальное | Геометрическое | Гипергеометрическое | Логарифмическое | Отрицательное биномиальное | Пуассона | Дискретное равномерное Мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Гиперэкспоненциальное | Распределение Гомпертца | Колмогорова | Коши | Лапласа | логнормальное | нормальное (Гаусса) | Логистическое | Накагами |Парето | Полукруговое | Непрерывное равномерное | Райса | Рэлея | Стьюдента | Фишера | Хи-квадрат | Экспоненциальное | Variance-gamma Многомерное нормальное | Копула