Окружность девяти точек

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
9 точек

Окружность девяти точек — это окружность, проходящая через середины всех трёх сторон треугольника. Она также называется окружностью Эйлера, окружностью Фейербаха, окружностью шести точек.

Окружность девяти точек получила такое название из-за следующей теоремы:

Основания трёх высот произвольного треугольника, середины трёх его сторон и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат все на одной окружности.

Свойства[править | править вики-текст]

Окружность девяти точек обладает ещё целым рядом свойств:

Центр окружности девяти точек лежит на прямой Эйлера, точно в середине отрезка между ортоцентром и центром описанной окружности.9pcircle 04.png

Радиус окружности девяти точек равен половине радиуса описанной окружности. Более того, описанная окружность есть образ окружности девяти точек относительно гомотетии с центром в ортоцентре и коэффициентом 2. 9pcircle03.svg Nine-point circle.svg

(Теорема Фейербаха) Окружность девяти точек произвольного треугольника касается вписанной и всех трёх вневписанных окружностей этого треугольника.

Иллюстрация к Теореме Фейербаха

История[править | править вики-текст]

Эйлер в 1765 году доказал, что основания высот и середины сторон лежат на одной окружности (отсюда название «окружность шести точек»). Первое полное доказательство общего результата было, по-видимому, опубликовано Карлом Фейербахом в 1821 году (вместе с теоремой, носящей его имя), но есть указания на то, что оно было известно и ранее.

Литература[править | править вики-текст]

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]