MIPS (архитектура)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
MIPS
Разработчик

MIPS Technologies, Inc.

Разрядность

64-bit (32→64)

Представлена

1981

Архитектура

RISC

Тип

Регистр-регистр

Кодирование СК

фиксированное

Переходы

по сравнению двух регистров

Порядок байт

Bi-endian (big→bi)

Расширения

MDMX, MIPS-3D, MIPS16e, MIPS MT

Регистры
Общего назначения

31 (R0=0)

Вещественные

32 (для double используются пары регистров в 32-х битных версиях процессора)

MIPS (англ. Microprocessor without Interlocked Pipeline Stages) — микропроцессор, разработанный компанией MIPS Computer Systems (в настоящее время MIPS Technologies) в соответствии с концепцией проектирования процессоров RISC (то есть для процессоров с сокращенным набором команд). Ранние модели процессора имели 32-битную структуру, позднее появились его 64-битные версии. Существует множество модификаций процессора, включая MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS32 и MIPS64, из них действующими являются MIPS32 (для 32-битной реализации) и MIPS64 (для 64-битной реализации). MIPS32 и MIPS64 определяют как набор регистров управления, так и набор команд.

Помимо этого, доступны дополненные модели, например, MIPS-3D, включающий в себя набор SIMD команд для обработки чисел с плавающей запятой, предназначенный для решения простых 3D задач, MDMX (MaDMaX) — с ещё более широкими возможностями — набором SIMD команд и использующий 64-битные регистры с плавающей запятой для работы с целыми числами, MIPS16e, который сжимает поток команд, чтобы уменьшить объём памяти, занимаемый программами, а также MIPS MT, обеспечивающий многопотоковый режим обработки.

Архитектуру MIPS часто изучают в программе курса Компьютерная Архитектура в университетах и технических лицеях. Эти процессоры значительно повлияли на более поздние RISC-архитектуры, в частности на Alpha.

В настоящее время различные реализации MIPS используются в основном во встроенных системах, например, в смартфонах, маршрутизаторах, шлюзах, а также в игровых консолях, таких как Sony PlayStation 2 и Sony PlayStation Portable. До конца 2006 года они применялись и в компьютерах SGI. К концу 1980х и 1990х эта архитектура широко использовалась многими компаниями, среди них Digital Equipment Corporation, NEC, Pyramid Technology, Siemens Nixdorf и Tandem Computers. С середины до конца 1990х годов каждым третьим микропроцессором на рынке производства был процессор под управлением MIPS.

История[править | править вики-текст]

Основоположник RISC[править | править вики-текст]

В 1981 году коллектив под руководством Джона Хеннесси (John L. Hennessy) из Университета Стэнфорда начал работу над проектом, который получил название MIPS. Главной идеей было увеличить производительность процессора, используя удлиненный конвейер. Концепция применения конвейера в качестве основной технологии была известна ещё задолго до этого (например, в IBM 801), но она не использовала весь свой потенциал. Центральный процессор включает в себя несколько специальных субблоков, таких как декодеры команд, целочисленное АЛУ (арифметико-логическое устройство), блоки загрузки/хранения (работа с памятью) и т. д. В традиционной не оптимизированной реализации отдельная команда в программе должна быть (почти всегда) завершена, прежде, чем запустится другая; в то время как в конвейерной архитектуре последовательные команды могут выполняться параллельно. Например, когда математическая инструкция вносится в блок с плавающей запятой, блок загрузки/хранения памяти может в этот же момент вызвать следующую команду.

Одним из главных препятствий в использовании конвейера был тот факт, что некоторые команды, такие как деление, выполняются намного дольше, и, вследствие этого, центральному процессору приходится ждать, прежде, чем передать на конвейер следующую команду. Единственное решение этой проблемы — использовать серию блокировок, позволяющих определенным стадиям конвейера индицировать, что они заняты и, в этом случае, приостанавливать вышестоящие в потоке команды. Группа Хеннеси рассматривала эти блокировки как огромный барьер в увеличении производительности, поскольку было необходимо обращаться ко всем модулям Центрального процессора, что занимает лишнее время и ограничивает тактовую частоту. Главным аспектом устройства MIPS было согласовать каждую подфазу каждой команды, в том числе кэширование, в один цикл, таким образом избегая необходимости в блокировках и пропуская на конвейер только один цикл.

Хотя такая реализация и исключала бы некоторые очень полезные операции, такие как умножение и деление, очевидно, что предельная производительность системы значительно увеличилась бы, так как микросхемы смогли бы работать с более высокой тактовой частотой. Достижение высокой скорости с использованием блокировок было бы сложным, так как время, необходимое для установки блокировок, пропорционально тактовой частоте (зависящей, в свою очередь, от размера кристалла). Вот почему исключение вышеупомянутых операций стало спорным вопросом.

Другое отличие дизайна MIPS от конкурирующих с ним Berkеley-архитектур — это внедренная в Berkеley-RISC возможность обработки вызова подпрограмм. Чтобы увеличить производительность столь общей задачи, в Berkеley-RISC была использована технология, называемая регистровым окном, которая, тем не менее ограничивала максимальную глубину многоуровневых вызовов. Каждый вызов подпрограммы требовал свой набор регистров, что приводило к необходимости увеличения их количества. А аппаратная реализация данного механизма занимала дополнительное пространство в кристалле ЦП. Но Хеннесси полагал, что более «тщательный» компилятор мог бы найти свободные регистры для передачи параметров функции, и что всего лишь увеличение числа регистров могло бы не только упростить эту задачу, но и увеличить производительность всех операций. Поэтому было принято решение отказаться от данной технологии в MIPS.

Архитектура MIPS была, в некотором отношении, наиболее типичной для RISC. Чтобы сэкономить биты в коде команды, в RISC было уменьшено количество инструкций для кодирования. В MIPS из 32 битов слова всего 6 используются для основного кода, а остальные могут содержать либо единственный 26-битный адрес перехода, либо до 5 полей, устанавливающих от 1 до 3 регистров + длина сдвига регистра. Существует и ряд других форматов, например, когда 2 регистра задаются непосредственно выделенным 16-битным полем и т. д. Такое распределение позволило процессору загружать команду и необходимые ей данные в одном цикле, в то время как в более старых архитектурах (не являвшихся RISC), например, таких как MOS Technology 6502, требовались отдельные циклы для загрузки основного кода и данных.

Это было одним из главных усовершенствований производительности, которые предлагали RISC. Однако, стоит сказать, что архитектуры, не являющееся RISC все же достигли подобной скорости, но другими средствами (такими, как очереди в ЦП).

Первая аппаратная реализация[править | править вики-текст]

В 1984 году, убежденный в коммерческом успехе своей разработки, Хеннесси покинул Стэнфорд, чтобы основать компанию MIPS Computer Systems. В 1985 году была реализована первая версия микропроцессора MIPS — R2000, доработанная в 1988 году и получившая название R3000. Эти 32-битные процессоры легли в основу компании в 1980х и использовались преимущественно в SG-сериях рабочих станций. Новые коммерческие проекты не соответствовали Стэнфордским научным исследованиям, так как практически все блокировки выполнялись на аппаратном уровне, к тому же операции умножения и деления были полностью реализованы.

В 1991 году MIPS впервые был представлен как 64-битный микропроцессор, в версии R4000. R4000 имеет расширенный TLB, в котором запись содержит не только виртуальный адрес, но и виртуальный идентификатор адресного пространства. Такой буфер устраняет основные проблемы производительности микроядра, достаточно медленного в архитектурах конкурирующих компаний (Pentium, PowerPC, Alpha) из-за необходимости сбрасывать TLB во время частого переключения контекста.

Тем не менее, у MIPS возникали финансовые трудности в связи с поставкой процессоров на рынок. Проект был настолько важен для SGI (в то время являвшихся одними из немногих основных покупателей MIPS), что в 1992 году SGI выкупили права на компанию с условием гарантии, что конструкция микропроцессоров не изменится. Став дочерней компанией, MIPS Computer Systems получили название MIPS Technologies.

Лицензируемая архитектура[править | править вики-текст]

В начале 1990 года MIPS начали лицензирование своих разработок для сторонних поставщиков. Идея оказалась успешной из-за простоты ядра, которое находило множество применений, где ранее использовались намного менее эффективные CISC-архитектуры, с тем же количеством и той же ценой схем (2 этих критерия тесно связаны: цена ЦП , как правило, зависит от количества схем и контактов). Компания Sun Microsystems сделала аналогичную попытку лицензирования ядра SPARC, но их ход не имел подобного успеха. К концу 1990х MIPS стали наиболее важной компанией в производстве встроенных процессоров, и в 1997 году 48-миллионные поставки процессоров на базе MIPS заставили RISC-архитектуры вытеснить популярное семейство процессоров 68k. MIPS были настолько успешными, что в 1998 году SGI передали часть активов MIPS Technologies. На сегодняшний день половина доходов MIPS поступает с лицензирования разработок, а большая часть другой половины — с контрактов на разработку ядер для производства сторонними поставщиками.

В 1999 году MIPS формализовали свои системы лицензирования вокруг двух основных конструкций — 32-разрядной MIPS32 (на базе MIPS II с некоторыми дополнительными функциями MIPS III, IV MIPS и MIPS V) и 64-разрядных MIPS64 (на базе MIPS V). Лицензия на MIPS64 была приобретена каждой из компаний NEC, Toshiba и SiByte (впоследствии приобретенная Broadcom) сразу же после объявления о её выпуске. Вскоре, к ним присоединились Philips, LSI Logic и IDT. Успех следовал за успехом, и сегодня процессоры MIPS являются одним из наиболее востребованных товаров на рынке устройств компьютерного типа (карманных компьютеров, приставок и т. п.), наряду с другими разработчиками, тщетно пытающимися их вытеснить.

Через несколько лет после того, как MIPS-архитектура стала лицензируемой, она начала привлекать все больше и больше новых компаний по разработке процессоров. Первой такой компанией была Quantum Effect Devices (см. следующий раздел). Команда разработчиков, собравших MIPS R4300i основала компанию SandCraft, предоставившую компании NEC новый процессор R5432, а немного позднее смоделировавшую R71000 — один из первых нестандартных процессоров для рынка встраиваемых систем. Команда основателей компании DEC StrongARM в конце концов разделилась на две новых компании по разработке процессоров, в основу которых лег MIPS: SiByte, производившая SB-1250 — одну из первых чиповых систем с высокой производительностью, основанных на MIPS (SOC) и Alchemy Semiconductor (позднее приобретенная AMD), производившая Au-1000 SOC для маломощных приложений. Компания Lexra использовала архитектуру, подобную MIPS, добавив к ней DSP для рынка аудио микросхем, а также поддержку многопотокового режима для сетевого рынка. Так как Lexra не покупала лицензию на MIPS, вскоре, между двумя компаниями разгорелись судебные процессы. Первый был довольно быстро погашен уже после того, как Lexra пообещала не продвигать свои процессоры, как сходные с MIPS. Второй процесс (о патенте MIPS 4814976 на обработку невыровненной инструкции (unaligned) доступа к памяти) был более затяжным и негативно отразился на бизнесе обеих компаний, а по его завершении MIPS Technologies выдали Lexra бесплатную лицензию и выплатили денежную компенсацию в крупном размере.

Следом за этими событиями на рынке появились две компании, специализирующиеся на создании многоядерных устройств, использующих архитектуру MIPS. Корпорация Raza Microelectronics выкупили производственную линию у менее успешных SandCraft, а затем начали выпускать восьмиядерные устройства для рынка телекоммуникаций и сетей. Cavium Networks, изначально являвшиеся поставщиком средств защиты процессоров, тоже начали производство восьми, а позже и 32-ядерных архитектур для тех же рынков. Обе компании сами проектировали ядра, и лишь лицензировали разработки, вместо того, чтобы покупать готовые процессоры MIPS.

Потеря рынка ПК[править | править вики-текст]

Среди производителей, создавших рабочие станции с использованием микропроцессоров MIPS такие компании, как SGI, MIPS Computer Systems, Inc., Whitechapel Workstations, Olivetti, Siemens-Nixdorf, Acer, Digital Equipment Corporation, NEC, и DeskStation. В числе операционных систем, портированных на архитектуру MIPS: IRIX компании SGI, Windows NT (до версии 4.0) компании Microsoft, Windows CE, Linux, BSD, UNIX System V, SINIX, QNX, и операционная система RISC непосредственно принадлежащая компании MIPS Computer Systems.

В начале 1990х существовало предположение, что MIPS вместе с другими мощными процессорами RISC вскоре обгонят архитектуру IA32 компании Intel. Этому способствовала поддержка двух первых версий Windows NT для Alpha, MIPS и PowerPC компании Microsoft, и, в несколько меньшей степени, — архитектуры Clipper и SPARC. Однако, как только Intel выпустил новейшие версии ЦП класса Pentium, Microsoft Windows NT v4.0 перестал поддерживать все, кроме Alpha и Intel. После решения SGI перейти на архитектуры Itanium и IA32, процессоры MIPS практически полностью перестали использоваться в персональных компьютерах.

Рынок встраиваемых систем[править | править вики-текст]

Ingenic JZ4730 — пример SOC, базированной на MIPS

В 1990е годы, MIPS-архитектура была широко распространена на рынке встраиваемых систем: для сетей, телекоммуникаций, видео игр, игровых консолей, принтеров, цифровых приставок, цифровых телевизоров, xDSL и кабельных модемов, а также карманных компьютеров.

Низкое энергопотребление и температурные характеристики встраиваемых MIPS-архитектур, широкие возможности внутренних функций делают этот микропроцессор универсальным для многих устройств.

Синтезируемые ядра для рынка встраиваемых систем[править | править вики-текст]

В последние годы большинство технологий, используемых в различных поколениях MIPS, предложены в виде IP-ядер (стандартных блоков) для встраиваемых реализаций процессора. Более того, предложены оба типа ядер — основанные на 32 и 64 битах, известные как 4K и 6K. Такие ядра могут совмещаться с другими структурными элементами, такими как FPU, системами SIMD, различными устройствами ввода-вывода и т. д.

Некогда коммерчески успешные ядра MIPS, и в настоящее время нашли потребительское и промышленное применение. Эти ядра можно найти в новых маршрутизаторах Cisco, Linksys и MikroTik, кабельных и ADSL модемах, смарт-картах, механизмах лазерных принтеров, цифровых приставках, роботах, карманных компьютерах, Sony PlayStation 2 и Sony PlayStation Portable. Тем не менее, в приложениях мобильных телефонов и PDA MIPS не удалось сместить прочно установившуюся там конкурирующую ARM-архитектуру.

Процессоры под управлением MIPS включают в себя: IDT RC32438; ATI Xilleon; Alchemy Au1000, 1100, 1200; Broadcom Sentry5; RMI XLR7xx, Cavium Octeon CN30xx, CN31xx, CN36xx, CN38xx and CN5xxx; Infineon Technologies EasyPort, Amazon, Danube, ADM5120, WildPass, INCA-IP, INCA-IP2; Microchip Technology PIC32; NEC EMMA and EMMA2, NEC VR4181A, VR4121, VR4122, VR4181A, VR5432, VR5500; Oak Technologies Generation; PMC-Sierra RM11200; QuickLogic QuickMIPS ESP; Toshiba Donau, Toshiba TMPR492x, TX4925, TX9956, TX7901.

Суперкомпьютеры MIPS[править | править вики-текст]

Одним из наиболее интересных применений архитектуры MIPS является их использование в многопроцессорных вычислительных суперкомпьютерах. В начале 1990х компания Silicon Graphics (SGI) перенаправила свой бизнес с графических терминалов на рынок высокопроизводительного вычисления. Успех первых попыток компании в области серверных систем (а именно, серия Challenge, основанная на R4400, R8000 и R10000) мотивировал SGI создать гораздо более мощную систему. Использование R10000 позволило компании спроектировать систему Origin 2000, в конечном счете расширяемую до 1024 ЦП, используя собственную межсистемную связь cc-NUMA (NUMAlink). Позже Origin 2000 породила новую систему — Origin 3000, вышедшую с теми же максимальными 1024 ЦП, но использовавшую в разработке микросхемы R14000 и R16000 с частотой до 700 МГц. Однако, в 2005 году, когда SGI приняла стратегическое решение о переходе на архитектуру Intel IA-64, суперкомпьютеры, базированные на MIPS были сняты с производства.

В 2007 году корпорация SiCortex представила новый многопроцессорный персональный суперкомпьютер, основанный на архитектуре MIPS. В его разработку легли MIPS64 и высокопроизводительная межсистемная связь с использованием топологии графов Кауца (англ. Kautz graph). Данная система является предельно эффективной и вычислительно мощной. Её уникальный аспект — многоядерный узел обработки, интегрирующий шесть ядер MIPS64, коммутатор контроллера памяти, межсистемную связь механизмов прямого доступа к памяти, локальную сеть с пропускной способностью 1 Гбит и PCI Express контроллеры. И все это на одном кристалле, который потребляет 10 Вт энергии, но выполняет максимум 6 миллиардов операций с плавающей запятой в секунду. Самая мощная конфигурация такого суперкомпьютера — версия SC5832, состоящая из 972 узлов (всего 5832 ядер MIPS64) и выполняющая 8,2 триллионов операций с плавающей запятой в секунду.

Loongson возвращает к персонализации[править | править вики-текст]

Компания Loongson, в надежде обойти патент MIPS, выпустила свою архитектуру, которая была полностью схожа с разработкой MIPS Technologies и поддерживалась ОС Linux. Так как производство процессоров Loongson было более дешёвым, MIPS получили возможность возродиться на рынке персональных компьютеров в лице Loongson. (В дальнейшем Loongson купили лицензию на MIPS — см. основную статью)

Процессоры под управлением MIPS также используются в нетбуках компаний iUnika, Bestlink, Lemote и Golden Delicious Computers.

MIPS IV[править | править вики-текст]

MIPS IV — это четвёртое поколение архитектуры, представляет собой расширенную версию MIPS III и совместим со всеми существующими моделями MIPS. Первый выпуск MIPSIV был представлен в 1994 году под названием R8000. MIPS IV включил в себя:

  • Простой регистр + регистр адресации для загрузки и хранения чисел с плавающей запятой
  • Операции FMA и FMS с одинарной и двойной точности для чисел с плавающей запятой
  • Команды условного перехода для целых чисел и для чисел с плавающей запятой
  • Дополнительные условные биты в регистре контроля и состояния числа с плавающей запятой: в общей сложности 8 битов.

MIPS V[править | править вики-текст]

MIPS V — пятая версия архитектуры, была представлена 21 октября 1996 года на Форуме Микропроцессоров 1996. Эта модель была разработана для того, чтобы повысить производительность графических 3D-приложений. В середине 1990-х большая часть не встроенных микропроцессоров MIPS приходилась на графические терминалы от SGI. Разработка MIPS V была дополнена целочисленными мультимедийными расширениями MDMX (MIPS Digital Media Extensions), которые были представлены в тот же день, что и MIPS V.

Реализации MIPS V так никогда и не были внедрены. В 1997 году SGI представила микропроцессоры под названиями «H1» («Beast») и «H2» («Capitan»), которые должны были быть произведены в 1999 году. Но вскоре их объединили, и в конечном итоге в 1998 году эти проекты были отменены.

В MIPS V был добавлен новый тип данных — PS (pair-single), который представляет собой два числа с плавающей запятой двойной точности (32-битные), хранящиеся в 64-битном регистре с плавающей запятой. Чтобы работать с этим типом данных в режиме SIMD, были добавлены различные варианты арифметических, сравнительных операций над числами с плавающей запятой, а также команда условного перехода. Появились новые инструкции для загрузки, реконфигурации и преобразования PS-данных. Это первая архитектура, сумевшая реализовать обработку чисел с плавающей запятой в SIMD-режиме с имеющимися ресурсами.

Семейство процессоров с архитектурой MIPS[править | править вики-текст]

Конвейер MIPS, проходящий пять стадий (получение инструкции, декодирование, исполнение, доступ к памяти и вывод)

Первым коммерческим микропроцессором с архитектурой MIPS был микропроцессор R2000, представленный в 1985 году. В нём были реализованы операции умножения и деления, которые выполнялись за несколько тактов. Устройство умножения и деления не было тесно интегрировано в ядро процессора, хотя и размещалось на том же кристалле; по этой причине система команд расширена инструкциями для загрузки результатов умножения и деления в регистры общего назначения, эти инструкции блокировали конвейер.

Микропроцессор R2000 мог быть загружен как в режиме big-endian, так и в режиме little-endian, содержал тридцать два 32-разрядных регистра общего назначения. Подобно процессорам AMD 29000 и Alpha микропроцессор R2000 не имел отдельного регистра флагов условий, так как разработчики посчитали его потенциальным «узким местом». Следует отметить, что счётчик команд непосредственно недоступен.

Микропроцессор R2000 поддерживал подключение до четырёх сопроцессоров, один из которых является встроенным и обеспечивает работу с исключениями, а также управление памятью (MMU). В случае необходимости в качестве ещё одного сопроцессора можно было подключить микросхему R2010, арифметический сопроцессор, который содержал тридцать два 32-разрядных регистра, которые можно было использовать как шестнадцать 64-разрядных регистров для работы с числами двойной точности. Следующим в семействе стал R3000, который появился в 1988 году. Он содержал кэш-память данных объёмом 64 КБ (R2000 — 32 КБ). Кроме того, R3000 обеспечивал когерентность кэш-памяти при работе в мультипроцессорных конфигурациях. Несмотря на то, что в поддержке мультипроцессорности R3000 имеется ряд недостатков, на базе R3000 было создано несколько работоспособных многопроцессорных систем. Как и для R2000, для R3000 был создан арифметический сопроцессор в виде отдельной СБИС: R3010. Микропроцессор R3000 стал первым коммерчески успешным процессором с архитектурой MIPS, было изготовлено более миллиона процессоров. Ускоренная версия R3000, работающая на тактовой частоте 40 МГц, названная R3000A, достигла производительности в 32 VUPs (VAX Unit of Performance). Дальнейшее развитие R3000A, микропроцессор R3051, работающий на частоте 33,8688 МГц был использован в игровой приставке Sony PlayStation. Другие производители также представили процессоры, совместимые с R3000A: в Performance Semiconductor был разработан R3400, в то время как компания IDT создала R3500, оба упомянутых процессора имели в интегрированный математический сопроцессор R3010. Первой системой на кристалле, использующей процессор с архитектурой MIPS, стала разработка R3900 фирмы Toshiba; данная микросхема использовалась в портативном компьютере, работавшем под управлением Windows CE. Был разработан радиационно-устойчивый вариант R3000 с интегрированным R3010, предназначенный для применения в космических аппаратах, который получил название Mongoose-V.

Серия R4000, выпущенная в 1991 году, расширила процессоры MIPS до 64 битов. (MIPS Technology была первой компанией выпустившей процессоры с 64-битовой архитектурой) R4000 состоит из 1,3 млн транзисторов, имеет встроенный кэш данных и кэш инструкций (оба по 8 Кб). В этом процессоре внешняя тактовая частота 50 МГц удваивается, а внутренняя тактовая частота составляет 100 МГц. Процессор R4400 выполнен на основе R4000, состоит из 2,2 млн транзисторов, имеет встроенный кэш данных и кэш инструкций (оба по 16 Кб), а внутренняя тактовая частота составляет 150 МГц. Набор команд этих процессоров (спецификация MIPS II) был расширен командами загрузки и записи 64-разрядных чисел с плавающей запятой, командами вычисления квадратного корня с одинарной и двойной точностью, командами условных прерываний, а также атомарными операциями, необходимыми для поддержки мультипроцессорных конфигураций. В процессорах R4000 и R4400 реализованы 64-битовые шины данных и 64-битовые регистры.

MIPS, теперь являющийся отделом SGI под названием MTI, разработал недорогие процессоры R4200, послужившие основой для будущих (ещё более дешёвых) R4300i. Производная этого процессора, NEC VR4300, использовалась в игровых консолях Nintendo 64.

нижняя сторона R4700 Orion с удаленной защитной крышкой, на которой видно кремниевый чип, изготовленный IDT и спроектированный Quantum Effect Devices
лицевая сторона R4700 Orion

Quantum Effect Devices (QED), самостоятельная компания, основанная разработчиками MIPS, разработала серию процессоров R4600 Orion, R4700 Orion, R4650 и R5000. Если в R4000 увеличили тактовую частоту, но пожертвовали количеством кэш-памяти, то QED уделили большое внимание и емкости кэш-памяти (доступ к которой можно получить всего за 2 цикла), и эффективному использованию поверхности кристалла. Процессоры R4600 и R4700 использовались в недорогих версиях рабочей станции SGI Indy, а также в первых маршрутизаторах Cisco (основанных на MIPS), например, серии 36х0 и 7х00. Микропроцессор R4650 применялся в телевизионных приставках WebTV (в настоящее время — Microsoft TV). В процессоре R5000 FPU диспетчеризация операций с плавающей запятой (одинарной точности) была более гибкой, чем в R4000, и, вследствие этого, рабочие станции SGI Indys, базированные на R5000 отличались лучшей графической производительностью, чем R4400 с такой же тактовой скоростью и графическим аппаратным устройством. Чтобы подчеркнуть улучшение после объединения R5000 и старой графической платы, SGI дала ей новое название. Немного позднее QED разработали семейство процессоров RM7000 и RM9000 для рынка сетей и лазерных принтеров. В Августе 2000 года компания QED была приобретена производителем полупроводников PMC-Sierra, и последняя продолжила инвестирование MIPS-архитектур. Процессор RM7000 включал в себя 256 Кб встроенной кэш-памяти 2го уровня и контроллер для дополнительной кэш-памяти 3го уровня. Были созданы процессоры RM9xx0 — семейство SOC-устройств, в которые включены такие периферийные составляющие (на северном мосту) как: контроллер памяти, PCI-контроллер, контроллер Ethernet, а также быстрые устройства ввода-вывода (например, высокопроизводительная шина типа HyperTransport).

R8000 (представлен в 1994 году) был первой суперскалярной архитектурой MIPS, способной осуществлять 2 целочисленные инструкции (или с плавающей запятой) и 2 инструкции обращения к памяти за один цикл. Данная разработка использовала 6 схем: устройство для целочисленных команд (16 Кб — команды и 16 Кб — кэш данных), для команд с плавающей запятой, три вторичных дескриптора кэш-памяти ОЗУ (два для вторичного доступа к кэш-памяти + один для отслеживания шины), а также кэш-контроллер ASIC. Архитектура имеет два полностью конвейеризованных устройства умножения-сложения (с двойной точностью), которые могут передавать поток данных в 4 Мб внекристального вторичного кэша. В середине 1990х процессоры R8000 запустили SGI серверы POWER Challenge, а позже стали доступны на рабочих станциях POWER Indigo2. Хотя производительность этого FPU и была наиболее подходящей для научных сотрудников, ограниченность его целочисленной производительности и высокая цена не смогли привлечь большинство пользователей, поэтому R8000 был на рынке всего год, и даже сейчас его едва ли можно найти.

В 1995 году был выпущен R10000. Этот процессор в однокристальном исполнении, работал с более высокой тактовой частотой, чем R8000, а также включал в себя объемную (32 КБ) первичную кэш-память данных и команд. Кроме того, он был суперскалярным, но это главное новшество было неисправно. Но даже с более простым FPU, значительно увеличенная производительность целочисленный вычислений, более низкая цена и высокая плотность записи сделали R10000 предпочтительным для большинства пользователей.

Все более поздние проекты были основаны на ядре R10000. В R12000 был использован 0.25 микронный технологический процесс с целью уменьшить чип и достигнуть большей тактовой скорости. Исправленный R14000 имел более высокую тактовую частоту в дополнение с поддержкой DDR SRAM для внекристальной кэш-памяти. Следом были выпущены R16000 и R16000A, тактовая частота которых была также увеличена; в них была встроена дополнительная кэш-память первого уровня, а их производство требовало более мелких кристаллов, чем прежде.

Среди других представителей семейства MIPS — R6000, ЭСЛ-реализация, выполненная компанией Bipolar Integrated Technology. R6000 относится к поколению процессоров MIPS II. Его TLB и устройство кэш-памяти значительно отличаются от остальных представителей данного семейства. R6000 не принес обещанной выгоды, и, хотя был признан в некоторой степени полезным для компьютеров Control Data, он мгновенно исчез с основного рынка.

Микропроцессоры MIPS
Модель Частота (МГц) Год Технология разработки (µm) Транзисторы (млн.) Размер кристалла (мм²) Число выводов Мощность (Вт) Напряжение (В) Кэш данных (KБ) Кэш инструкций (KБ) Кэш 2го уровня Кэш 3го уровня
R2000 8—16.67 1985 2.0 0.11 ? ? ? ? 32 64 НЕТ НЕТ
R3000 12—40 1988 1.2 0.11 66.12 145 4 ? 64 64 0-256 Kб Внешняя НЕТ
R4000 100 1991 0.8 1.35 213 179 15 5 8 8 1 Mб Внешняя НЕТ
R4400 100—250 1992 0.6 2.3 186 179 15 5 16 16 1-4 Mб Внешняя НЕТ
R4600 100—133 1994 0.64 2.2 77 179 4.6 5 16 16 512 Kб Внешняя НЕТ
R4700 133 1996  ?  ?  ? 179  ?  ? 16 16 Внешняя НЕТ
R5000 150—200 1996 0.35 3.7 84 223 10 3.3 32 32 1 Mб Внешняя НЕТ
R8000 75—90 1994 0.7 2.6 299 591+591 30 3.3 16 16 4 Mб Внешняя НЕТ
R10000 150—250 1996 0.35, 0.25 6.7 299 599 30 3.3 32 32 512 Kб—16 Mб Внешняя НЕТ
R12000 270—400 1998 0.25, 0.18 6.9 204 600 20 4 32 32 512 Kб—16 Mб Внешняя НЕТ
RM7000 250—600 1998 0.25, 0.18, 0.13 18 91 304 10, 6, 3 3.3, 2.5, 1.5 16 16 256 Kб Внутренняя 1 Mб Внешняя
R14000 500—600 2001 0.13 7.2 204 527 17 ? 32 32 512 Kб—16 Mб Внешняя НЕТ
R16000 700—1000 2002 0.11 ? ? ? 20 ? 64 64 512 Kб—16 Mб Внешняя НЕТ
R24K 750+ 2003 65 nm ? 0.83 ? ? ? 64 64 4-16 Mб Внешняя НЕТ

Формат инструкций MIPS I[править | править вики-текст]

Инструкции разделяются на три типа: R, I и J. Каждая инструкция начинается с 6-битного кода. В дополнение к коду, инструкции R-типа определяют три регистра, область размера сдвига регистра, и область функции; инструкции I-типа определяют два регистра и непосредственное значение; инструкции J-типа следуют коду операции с 26-битным шагом.

Далее приведена таблица применения трех форматов инструкции в архитектуре ядра:

Тип −31-                                 формат (в битах)                                 −0-
R код (6) rs (5) rt (5) rd (5) shamt (5) функция (6)
I код (6) rs (5) rt (5) immediate (16)
J код (6) адрес (26)

Язык ассемблера MIPS[править | править вики-текст]

Данные инструкции языка ассемблера имеют прямую аппаратную реализацию, в отличие от псевдоинструкций, которые перед сборкой транслируются в настоящие составные инструкции.

  • Далее, регистровые буквы d, t, и s будут обозначать указатели на номера и имена регистров.
  • C обозначает константу.
  • Все последующие команды являются собственными.
  • Все коды операций и функций представлены в шестнадцатеричной системе счисления.
  • Набор инструкций MIPS32 идентифицирует, что число без знака, участвующее в сложении или вычитании, некорректно. Разницей между форматами числа со знаком и без является не увеличение длины операндов (или её уменьшение), а способность распознавать, было ли прерывание в случае переполнения, или же прерывание было проигнорировано. Операнд константа, в соответствие с этими инструкциями, всегда должен иметь знак.

Целочисленные операции[править | править вики-текст]

MIPS имеет 32 регистра для целочисленных операций. Для выполнения арифметических вычислений данные должны находиться в регистрах. Регистр $0 всегда хранит 0, а регистр $1 резервируется для сборки (для хранения псевдоинструкций и больших констант). Нижеприведенная таблица показывает какие биты каким частям инструкции соответствуют. Дефис (-) обозначает нейтральное состояние.

Категория Название Синтаксис инструкции Значение Формат/код/функция Примечания/Кодирование
Арифметическая Add add $d,$s,$t $d = $s + $t R 0 2016 складывает два регистра, выполняет прерывание при переполнении
000000ss sssttttt ddddd--- --100000
Add unsigned addu $d,$s,$t $d = $s + $t R 0 2116 как и выше, но игнорирует переполнение
000000ss sssttttt ddddd--- --100001
Subtract sub $d,$s,$t $d = $s — $t R 0 2216 Вычитает два регистра, выполняет прерывание при переполнении
000000ss sssttttt ddddd--- --100010
Subtract unsigned subu $d,$s,$t $d = $s — $t R 0 2316 как и выше, но игнорирует переполнение
000000ss sssttttt ddddd000 00100011
Add immediate addi $t,$s,C $t = $s + C (знаковое) I 816 - Используется для сложения констант со знаками (а также для копирования одного регистра в другой: addi $1, $2, 0), выполняет прерывание при переполнении
001000ss sssttttt CCCCCCCC CCCCCCCC
Add immediate unsigned addiu $t,$s,C $t = $s + C (знаковое) I 916 - как и выше, но игнорирует переполнение, С остается знаковым
001001ss sssttttt CCCCCCCC CCCCCCCC
Multiply mult $s,$t LO = (($s * $t) << 32) >> 32;
HI = ($s * $t) >> 32;
R 0 1816 Умножает два регистра и записывает 64-битный результат в два специальных поля для памяти — LO and HI. Аналогично, можно записать результат операции в виде: (int HI,int LO) = (64-bit) $s * $t . См. mfhi и mflo для доступа к LO и HI регистрам.
Divide div $s, $t LO = $s / $t     HI = $s % $t R 0 1A16 Делит один регистр на другой и записывает 32-битный результат в LO, а остаток в HI.[1]
Divide unsigned divu $s, $t LO = $s / $t     HI = $s % $t R 0 1B16 Делит один регистр на другой и записывает 32-битный результат в LO, а остаток в HI.
Передача данных Load double word ld $t,C($s) $t = Memory[$s + C] I 2316 - загружает double word из: MEM[$s+C] и следующих 7 байтов в $t и следующий регистр.
Load word lw $t,C($s) $t = Memory[$s + C] I 2316 - загружает word из: MEM[$s+C] и следующих 3 байтов.
Load halfword lh $t,C($s) $t = Memory[$s + C] (знаковое) I 2116 - загружает halfword из: MEM[$s+C] и следующего байта. Знак расширен до ширины регистра.
Load halfword unsigned lhu $t,C($s) $t = Memory[$s + C] (беззнаковое) I 2516 - Как и выше, но без расширения знака.
Load byte lb $t,C($s) $t = Memory[$s + C] (signed) I 2016 - загружает byte из: MEM[$s+C].
Load byte unsigned lbu $t,C($s) $t = Memory[$s + C] (unsigned) I 2416 - Как и выше, но без расширения знака.
Store double word sd $t,C($s) Memory[$s + C] = $t I - сохраняет два типа word из $t и следующего регистра в: MEM[$s+C] и следующие 7 байтов. Порядок операндов может создать путаницу.
Store word sw $t,C($s) Memory[$s + C] = $t I 2B16 - сохраняет word в: MEM[$s+C] и следующие 3 байта. Порядок операндов может создать путаницу.
Store half sh $t,C($s) Memory[$s + C] = $t I 2916 - сохраняет первыю половину регистра (halfword) в: MEM[$s+C] и следующий байт.
Store byte sb $t,C($s) Memory[$s + C] = $t I 2816 - сохраняет первую четверть регистра (byte) в: MEM[$s+C].
Load upper immediate lui $t,C $t = C << 16 I F16 - Загружает 16-битный операнд в вышестоящие 16 битов определенного регистра. Максимальная величина константы 216−1
Move from high mfhi $d $d = HI R 0 1016 Помещает значение из HI в регистр. Не используйте инструкции умножения и деления внутри инструкции mfhi (это действие неопределено из-за конвейера MIPS).
Move from low mflo $d $d = LO R 0 1216 Помещает значение из LO в регистр. Не используйте инструкции умножения и деления внутри инструкции mflo (это действие неопределено из-за конвейера MIPS).
Move from Control Register mfcZ $t, $s $t = Coprocessor[Z].ControlRegister[$s] R 0 Перемещает 4-байтовое значение из сопроцессора регистра Z-контроля в регистр общего назначения. Расширение знака.
Move to Control Register mtcZ $t, $s Coprocessor[Z].ControlRegister[$s] = $t R 0 Перемещает 4-байтовое значение из регистра общего назначения в сопроцессор регистра Z-контроля. Расширение знака.
Логическая And and $d,$s,$t $d = $s & $t R 0 2416 Конъюнкция Bitwise
000000ss sssttttt ddddd--- --100100
And immediate andi $t,$s,C $t = $s & C I C16 -
001100ss sssttttt CCCCCCCC CCCCCCCC
Or or $d,$s,$t $d = $s | $t R 0 2516 Дизъюнкция Bitwise
Or immediate ori $t,$s,C $t = $s | C I D16 -
Exclusive or xor $d,$s,$t $d = $s ^ $t R 0 2616
Nor nor $d,$s,$t $d = ~ ($s | $t) R 0 2716 Bitwise nor
Set on less than slt $d,$s,$t $d = ($s < $t) R 0 2A16 Проверяет, является ли один регистр меньше другого.
Set on less than immediate slti $t,$s,C $t = ($s < C) I A16 - Проверяет, является ли один регистр меньше константы.
Битовый сдвиг Shift left logical sll $t,$s,C $t = $s << C R 0 0 сдвигает С битов влево (умножает степенями двойки 2^{CONST} )
Shift right logical srl $t,$s,C $t = $s >> C R 0 216 сдвигает С битов вправо (делит степенями двойки 2^{C} ). Заметьте, что эта инструкция работает как деление в дополнительным двоичном коде только если значение положительно.
Shift right arithmetic sra $t,$s,C \scriptstyle $t = $s >> C + \left(\left(\sum_{n=1}^{\text{CONST}}2^{31-n}\right)\cdot $2>>31\right) R 0 316 сдвигает С битов — (делит в двоичном дополнительном коде степенями двойки)
Условное ветвление Branch on equal beq $s,$t,C if ($s == $t) go to PC+4+4 °C I 416 - Переходит к инструкции по указанному адресу, если два регистра равны.
000100ss sssttttt CCCCCCCC CCCCCCCC
Branch on not equal bne $s,$t,C if ($s != $t) go to PC+4+4 °C I 516 - Переходит к инструкции по указанному адресу, если два регистра не равны.
Безусловный переход Jump j C PC = PC+4[31:28] . C*4 J 216 - Выполняет безусловный переход к инструкции по указанному адресу.
Jump register jr $s goto address $s R 0 816 Переходит по адресу, содержащемуся в указанном регистре.
Jump and link jal C $31 = PC + 8; PC = PC+4[31:28] . C*4 J 316 - Как процедура — применяется для вызова подпрограммы, регистр $31 получает и возвращает адрес; возврат из подпрограммы совершает jr $31.

Примечание: в коде языка ассемблера MIPS, смещение для ветвящихся инструкций может быть представлено маркировками в другом месте кода.

Примечание: Не существует соответствующей команды «копирование в регистр» (load lower immediate); это можно сделать с помощью функций addi (add immediate) или ori (or immediate) c регистром $0. Например, обе команды addi $1, $0, 100 и ori $1, $0, 100 загружают в регистр $1 значение 100.

Операции над числами с плавающей запятой[править | править вики-текст]

MIPS имеет 32 регистра с плавающей запятой. Регистры соединены по 2 для двойной точности вычислений. Регистры с нечетными номерами не могут быть использованы для арифметических операций или ветвления, они могут лишь частично указывать двойную точность в паре регистров.

Категория Название Синтаксис инструкции Значение Формат/код/функция Примечания/Кодирование
Арифметические FP add single add.s $x,$y,$z $x = $y + $z Сложение чисел с плавающей запятой(одинарная точность)
FP subtract single sub.s $x,$y,$z $x = $y — $z Вычитание чисел с плавающей запятой(одинарная точность)
FP multiply single mul.s $x,$y,$z $x = $y * $z Умножение чисел с плавающей запятой(одинарная точность)
FP divide single div.s $x,$y,$z $x = $y / $z Деление чисел с плавающей запятой(одинарная точность)
FP add double add.d $x,$y,$z $x = $y + $z Сложение чисел с плавающей запятой(двойная точность)
FP subtract double sub.d $x,$y,$z $x = $y — $z Вычитание чисел с плавающей запятой(двойная точность)
FP multiply double mul.d $x,$y,$z $x = $y * $z Умножение чисел с плавающей запятой(двойная точность)
FP divide double div.d $x,$y,$z $x = $y / $z Деление чисел с плавающей запятой(двойная точность)
Передача данных Load word coprocessor lwcZ $x,CONST ($y) Coprocessor[Z].DataRegister[$x] = Memory[$y + CONST] I Загружает 4 байта типа word из: MEM[$2+CONST] в регистр данных сопроцессора. Расширение знака.
Store word coprocessor swcZ $x,CONST ($y) Memory[$y + CONST] = Coprocessor[Z].DataRegister[$x] I Записывает 4 байта из регистра данных сопроцессора в MEM[$2+CONST]. Расширение знака.
Логические FP compare single (eq, ne, lt, le, gt, ge) c.lt.s $f2,$f4 if ($f2 < $f4) cond=1; else cond=0 Сравнение на меньшее команд с плавающей запятой. Одинарная точность.
FP compare double (eq, ne, lt, le, gt, ge) c.lt.d $f2,$f4 if ($f2 < $f4) cond=1; else cond=0 Сравнение на меньшее команд с плавающей запятой. Двойная точность.
Ветвление branch on FP true bc1t 100 if (cond == 1) go to PC+4+100 если формат FP, выполняется ветвление.
branch on FP false bc1f 100 if (cond == 0) go to PC+4+100 если фотмат не FP, выполняется ветвление.

Псевдоинструкции[править | править вики-текст]

Эти инструкции принимаются языком ассемблера MIPS, однако они не являются реальными. Ассемблер переводит их в последовательности настоящих инструкций.

Название Синтаксис инструкции Трансляция в обычную инструкцию значение
Load Address la $1, LabelAddr lui $1, LabelAddr[31:16]; ori $1,$1, LabelAddr[15:0] $1 = Маркировка адреса
Load Immediate li $1, IMMED[31:0] lui $1, IMMED[31:16]; ori $1,$1, IMMED[15:0] $1 = 32-битное прямое значение
Branch if greater than bgt $rs,$rt,Label slt $at,$rt,$rs; bne $at,$zero,Label if(R[rs]>R[rt]) PC=Label
Branch if less than blt $rs,$rt,Label slt $at,$rs,$rt; bne $at,$zero,Label if(R[rs]<R[rt]) PC=Label
Branch if greater than or equal bge etc. if(R[rs]>=R[rt]) PC=Label
Branch if less than or equal ble if(R[rs]<=R[rt]) PC=Label
Branch if greater than unsigned bgtu if(R[rs]=>R[rt]) PC=Label
Branch if greater than zero bgtz if(R[rs]>0) PC=Label
Multiplies and returns only first 32 bits mul $1, $2, $3 mult $2, $3; mflo $1 $1 = $2 * $3

Несколько других важных инструкций[править | править вики-текст]

  • NOP (без операции) (машинный код 0x00000000, интерпретируется процессором как sll $0, $0, 0)
  • Break (разрывы программы, используется отладчиками)
  • Системный вызов (используется для системных вызовов операционной системы)

Использование регистра транслирования[править | править вики-текст]

Аппаратная архитектура определяет следующие критерии:

  • Регистр общего назначения $0 всегда возвращает значение 0.
  • Регистр общего назначения $31 используется в качестве регистра-ссылки для команд перехода и связи.
  • HI и LO используются для доступа к результатам умножения/деления, доступ к которым осуществляется командами mfhi (move from high) и mflo (move from low).

Это единственные ограничения, которые аппаратная архитектура накладывает на использование регистров общего назначения.

Различные устройства MIPS реализовывают специальные соглашения о вызовах, которые ограничивают использование регистров. Соглашения о вызовах полностью поддерживаются комплексом ПО, но не требуются аппаратным обеспечением.

Регистры
Название Номер Применение нужно ли резервировать?
$zero $0 всегда хранит 0 N/A
$at $1 временный регистр для языка ассемблера НЕТ
$v0—$v1 $2–$3 значения функций и выражений НЕТ
$a0—$a3 $4–$7 аргументы функций НЕТ
$t0—$t7 $8–$15 временные НЕТ
$s0—$s7 $16–$23 сохраненные временные значения ДА
$t8—$t9 $24–$25 временные НЕТ
$k0—$k1 $26–$27 зарезервирована для ядра операционной системы НЕТ
$gp $28 глобальный указатель ДА
$sp $29 указатель стека ДА
$fp $30 указатель фрейма ДА
$ra $31 возвращает адрес N/A

Защищенные регистры (по соглашению) не могут быть изменены вызовом системы или процедуры (функции). Например, $s-регистры должны быть сохранены в стеке процедурой, которая собирается ими воспользоваться; к $sp и $fp-регистрам приращиваются константы, а по окончании процедуры регистры вновь уменьшаются. Противоположным примером служит регистр $ra, который автоматически меняется при его вызове любой функцией. $t-регистры должны сохраняться программой перед вызовом любой процедуры (если программе нужны данные, полученные после вызова).

Эмуляторы[править | править вики-текст]

Среди Open Virtual Platforms существует бесплатный эмулятор OVP-sim, доступный для некоммерческого использования, который представляет собой библиотеку моделей процессоров и платформ, а также интерфейсов API, позволяющих пользователю проектировать свои собственные модели. Библиотека моделей является открытым ресурсом, написанном на языке С, и включает в себя ядра MIPS 4K, 24K и 34K. Данные модели созданы и поддерживаются компанией Imperas, которая в сотрудничестве с MIPS Tеchnologies протестировала эмулятор и отметила его знаком MIPS-Verified. Образцы платформ, основанных на MIPS включают в себя как само металлическое оборудование, так и платформы для загрузки немодифицированных двоичных отображений Linux. Такие платформы-эмуляторы эффективны для обучения, а также доступны, бесплатны и просты в использовании. OVPsim разработанный и поддерживаемый Imperas работает с высокой скоростью (сотни миллионов инструкций с секунду), и применим для описания многоядерных архитектур.

Существует свободно доступный эмулятор MIPS32 (ранние версии могли имитировать только R2000/R3000), выпущенный под названием SPIM и предназначенный для использования в обучении. EduMIPS64 — это межплатформенный графический эмулятор процессора MIPS64, написанный на языке Java/Swing. Он поддерживает множество MIPS64 ISA и позволяет пользователю наглядно увидеть, что происходит в конвейере, когда ЦП выполняет программу на языке ассемблера. Проект имеет строго образовательные цели и широко используется на некоторых курсах компьютерной архитектуры во всем мире.

Ещё один GUI-эмулятор процессоров MIPS — это MARS, тоже разработанный в образовательных целях, особенно эффективен вкупе с книгой Хеннесси Computer Organization and Design.

Более продвинутые версии бесплатных эмуляторов — Gxemul (ранее известные как проекты mips64emul), а также проекты QEMU. Они имитируют различные модели микропроцессоров MIPS III и MIPS IV (в качестве дополнения к компьютерным системам, их использующим).

Коммерческие разработки эмуляторов доступны в основном для встроенного использования процессоров MIPS, например, Virtutech Simics (MIPS 4Kc и 5Kc, PMC RM9000, QED RM7000), VaST Systems (R3000, R4000), и CoWare (MIPS4KE, MIPS24K, MIPS25Kf и MIPS34K).

Список процессоров на базе архитектуры MIPS по компаниям[править | править вики-текст]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]