Разложение на ручки
Разложение на ручки m-многообразия M — это фильтрация
где каждое получается из путём присоединения -ручек. Разложение на ручки для многообразия соответствует CW-разбиению в топологическом пространстве — разложение на ручки позволяет нам использовать методы исследования CW-комплексов, адаптированные к миру гладких многообразий. Таким образом, i-ручка является гладким аналогом i-ячейки. Разложения многообразий на ручки возникают из теории Морса. Модификация структур ручек тесно связана с теорией Серфа.
Предпосылки
[править | править код]Рассмотрим стандартное CW-разбиение n-сферы с одной нулевой ячейкой и одной n-ячейкой. С точки зрения гладких многообразий оно является вырожденным разбиением сферы, так как нет естественного способа увидеть гладкую структуру с помощью этого разбиения, в частности, гладкая структура вблизи 0-ячейки зависит от поведения характеристического отображения в окрестности .
Проблема с CW-разложениями заключается в том, что присоединяемые отображения для ячеек не живут в мире гладких отображений между многообразиями. Изначальная идея для исправления этого дефекта — теорема о трубчатой окрестности. Если задана точка p на многообразии M, её замкнутая трубчатая окрестность диффеоморфна . Таким образом, мы получаем разбиение M на несвязное объединение и , склеенное по их общей границе. Главный вопрос здесь, является ли это склеивающее отображение диффеоморфизмом. Возьмём гладкую кривую вложенную в , её трубчатая окрестность диффеоморфна . Это позволяет записать как объединение трёх многообразий, склеенных вдоль частей их границ:
- дополнение открытой трубчатой окрестности кривой в .
Заметим, что все склеиваемые отображения являются гладкими, в частности, когда мы склеиваем с , отношение эквивалентности образуется путём вложения в , которое является гладким по теореме о трубчатой окрестности.
Разложения на ручки ввёл Стивен Смейл[1]. В оригинальной формулировке процесс присоединения j-ручки к m-многообразию M предполагает, что осуществляется вложение в . Пусть . Многообразие (другими словами, объединение M с j-ручкой вдоль f ) соответствует несвязному объединению и с отождествлением с его образом в , то есть:
где отношение эквивалентности задаётся как для всех .
Говорят, что многообразие N получается из M присоединением j-ручек, если объединение M с конечным числом j-ручек диффеоморфно N. Тогда разложение на ручки многообразия определяется как постепенное присоединение к пустому множеству ручек, так чтобы в конечном счёте получилось . Таким образом, многообразие имеет разложение на ручки только с 0-ручками, если оно диффеоморфно несвязному объединению шаров. Связное многообразие, содержащее ручки только двух типов (то есть 0-ручки и j-ручки для некоторого фиксированного j) называется телом с ручками.
Терминология
[править | править код]Возьмём объединение M с j-ручкой :
называется приклеивающей сферой (или подошвенной сферой)[2].
иногда называется оснащением приклеивающей сферы, поскольку оно даёт тривиализацию его нормального расслоения.
является опоясывающей сферой ручки в .
Многообразие, полученное присоединением копий -ручек к диску , является (m, k)-телом с ручками рода g .
Представления кобордизмов
[править | править код]Представление кобордизма ручками состоит из кобордизма W где и фильтрации
где и являются -мерными многообразиями, — -мерным, диффеоморфно , а получается из путём присоединения i-ручек. Поскольку разложения на ручки являются для многообразий аналогом разложений на ячейки топологических пространств, представления кобордизмов ручками для многообразий с границами являются аналогом относительных разложений ячеек пар пространств.
С точки зрения теории Морса
[править | править код]Если задана функция Морса на компактном многообразии M без края, таком что критические точки функции удовлетворяют и выполняется
- ,
тогда для всех j диффеоморфно , где — индекс критической точки . Индекс соответствует размерности максимального подпространства касательного пространства , где гессиан отрицательно определён.
Если индексы удовлетворяют неравенству , то получается разложение на ручки многообразия M. Более того, любое многообразие имеет такую функцию Морса, так что они имеют разложения на ручки. Похожим образом, если задан кобордизм с и функция , которая является функцией Морса на внутренности, постоянна на границе и удовлетворяет свойству увеличения индекса, существует порождённое представление ручек кобордизма W.
Если — функция Морса , также является функцией Морса. Соответствующее разложение на ручки/представление кобордизма называется двойственным разложением.
Некоторые главные теоремы и наблюдения
[править | править код]- Разбиение Хегора замкнутого ориентируемого 3-многообразия является разбиением 3-многообразия на объединение двух (3,1)-тел с ручками вдоль их общей границы, которое называется разбиением Хегора для поверхности. Разбиения Хегора возникают для 3-многообразий несколькими естественными путями. Если задано разложение 3-многообразия на ручки , объединение 0- и 1-ручек является (3,1)-телом с ручками и объединение 3- и 2-ручек также даёт (3,1)-тело с ручками (с точки зрения двойственного разбиения), то есть разбиение Хегора. Если 3-многообразие имеет триангуляцию T, существует порождённое разбиение Хегора, где первое (3,1)-тело с ручками — это регулярная окрестность 1-остова , а другое (3,1)-тело с ручками — это регулярная окрестность двойственного 1-остова.
- Если присоединить две ручки в последовательности , можно изменить порядок присоединения, обеспечивая , то есть это многообразие диффеоморфно многообразию вида для подходящих отображений присоединения.
- Граница диффеоморфна , разрезанному вдоль оснащённой сферы . Это основная связь между хирургией, ручками и функциями Морса.
- Как следствие, m-многообразие M является границей m+1-многообразия W тогда и только тогда, когда M может быть получено из хирургией на наборе оснащённых зацеплений в . Например, известно, что любое 3-многообразие является границей 4-многообразия (подобным же образом ориентированные спинорные 3-многообразия являются границей ориентированных и спинорных 4-многообразий соответственно) согласно работе Рене Тома о кобордизмах. Таким образом, любое 3-многообразие может быть получено хирургией на оснащённых зацеплениях на 3-сфере. В ориентированном случае принято сводить эти оснащённые зацепления к оснащённому вложению несвязного объединения окружностей.
- Теорема о h-кобордизме доказана путём упрощения разложений на ручки гладких многообразий.
См. также
[править | править код]- Ручка Кассона[англ.]
- Теория [ко]бордизмов
- CW-комплекс
- Тело с ручками
- Исчисление Кирби[англ.]
- Разложение многообразия[англ.]
Примечания
[править | править код]- ↑ Smale, 1962, с. 387–399.
- ↑ Скорпан, 2016, с. 46.
Литература
[править | править код]- Smale S. On the structure of manifolds // Amer. J. Math. — 1962. — Т. 84.
- Статья перепечатана в книге:S. Smale. On the structure of manifolds // Topological library. Part 1: Cobordisms and their applications / Editor-in-charge: Louis H. Kauffman; Editors: S. P. Novikov, I. A. Tairnanov. — World Scientific Publishing Co. Pte. Ltd, 2007. — Т. 39. — (SERIES ON KNOTS AND EVERYTHING). — ISBN 978-981-270-559-4.
- Скорпан А. Удивительный мир четырёхмерных многообразий. — М.: МЦНМО, 2016. — ISBN 978-5-4439-2385-7.
Основная литература
[править | править код]- Kosinksi A. Differential Manifolds. — Academic Press, 1992. — Т. 138. — (Pure and Applied Mathematics).
- Robert Gompf, Andras Stipsicz. 4-Manifolds and Kirby Calculus. — Providence, RI: American Mathematical Society, 1999. — Т. 20. — (Graduate Studies in Mathematics). — ISBN 0-8218-0994-6.
Для улучшения этой статьи желательно:
|