Биекция: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
отмена правки 35872381 участника 91.143.38.134 (обс)
Строка 28: Строка 28:
* Функция <math>f:X\to Y</math> является биективной тогда и только тогда, когда существует [[обратная функция]] <math>f^{-1}:Y\to X</math> такая, что
* Функция <math>f:X\to Y</math> является биективной тогда и только тогда, когда существует [[обратная функция]] <math>f^{-1}:Y\to X</math> такая, что
: <math>\forall x\in X\;f^{-1}(f(x))=x</math> и <math>\forall y\in Y\;f(f^{-1}(y))=y.</math>
: <math>\forall x\in X\;f^{-1}(f(x))=x</math> и <math>\forall y\in Y\;f(f^{-1}(y))=y.</math>
* Если функции <math>f</math> и <math>g</math> биективны, то и композиция функций <math>g\circ f</math> биективна, в этом случае <math>(g\circ f)^{-1} = f^{-1}\circ g^{-1}</math>. Коротко: '''композиция биекций является биекцией.''' Обратное, однако, неверно: если <math>g\circ f</math> биективна, то мы можем утверждать лишь, что <math>f</math> биективна, а <math>g</math> может быть как сюръективной, так и инъективной.
* Если функции <math>f</math> и <math>g</math> биективны, то и композиция функций <math>g\circ f</math> биективна, в этом случае <math>(g\circ f)^{-1} = f^{-1}\circ g^{-1}</math>. Коротко: '''композиция биекций является биекцией.''' Обратное, однако, неверно: если <math>g\circ f</math> биективна, то мы можем утверждать лишь, что, как минимум, одна из функций <math>f</math> и <math>g</math> биективна.


== Применения ==
== Применения ==

Версия от 20:22, 6 июля 2011

Биективная функция.

Биекция — это отображение, которое является одновременно и сюръективным и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом, определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют ещё взаимно-однозначным отображением (соответствием), одно-однозначным отображением.

Если между двумя множествами можно установить взаимно-однозначное соответствие (биекция), то такие множества называются равномощными. С точки зрения теории множеств, равномощные множества неразличимы.

Взаимно-однозначное отображение конечного множества в себя называется перестановкой (элементов этого множества).

Определение

Функция называется биекцией (и обозначается ), если она:

  1. Переводит разные элементы множества в разные элементы множества (инъективность). Иными словами,
    • .
  2. Любой элемент из имеет свой прообраз (сюръективность). Иными словами,
    • .


Примеры

  • Тождественное отображение  на множестве биективно.
  •  — биективные функции из в себя. Вообще, любой моном одной переменной нечетной степени является биекцией из в себя.
  •  — биективная функция из в .
  • не является биективной функцией, если считать её определённой на всём .

Свойства

Композиция инъекции и сюръекции, дающая биекцию.
  • Функция является биективной тогда и только тогда, когда существует обратная функция такая, что
и
  • Если функции и биективны, то и композиция функций биективна, в этом случае . Коротко: композиция биекций является биекцией. Обратное, однако, неверно: если биективна, то мы можем утверждать лишь, что, как минимум, одна из функций и биективна.

Применения

В информатике

Организация связи «один к одному» между таблицами реляционной БД на основе первичных ключей.

Примечания

См. также


Литература

  • Н. К. Верещагин, А. Шень. Часть 1. Начала теории множеств // Лекции по математической логике и теории алгоритмов. — 2-е изд., испр.. — М.: МЦНМО, 2002. — 128 с.
  • Ершов Ю. Л., Палютин Е. А . Математическая логика: Учебное пособие. — 3-е, стереотип. изд. — СПб.: Лань, 2004. — 336 с.